Vicinal difunctionalization of carbon–carbon double bond for the platform synthesis of trifluoroalkyl amines

Béke, et al.
Supplementary Information
for
Vicinal difunctionalization of carbon–carbon double bond
for the platform synthesis of trifluoroalkyl amines
by
Ferenc Béke, Ádám Mészáros, Ágnes Tóth, Bence Béla Botlik, Zoltán Novák

ELTE Catalysis and Organic Synthesis Research Group,
Institute of Chemistry, Eötvös University,
Pázmány Péter stny. 1/a H-1117 Budapest, Hungary
E-mail: novakz@elte.hu
Web: zng.elte.hu
Table of contents

General conditions ... 12
Preparation of starting materials .. 13
 Synthesis of compound 1 .. 13
 General procedure for the synthesis of p-methoxybenzyl protected amines 2 14
 N-(4-methoxybenzyl)prop-2-en-1-amine 2 (A1) ... 14
 Methyl (4-methoxybenzyl)-L-leucinate 3 (A2) .. 15
 Ethyl (4-methoxybenzyl)-L-phenylalaninate 4 (A3) .. 15
 N-(4-methoxybenzyl)adamantan-1-amine 5 (A4) ... 16
 N-(4-methoxybenzyl)cyclopropanamine 6 (A5) .. 16
 (R)-N-(4-methoxybenzyl)-1-phenylethan-1-amine 7 (A6) ... 17
 Ethyl (4-methoxybenzyl)glycinate 8 (A7) ... 17
 N-(4-methoxybenzyl)hexan-1-amine 9 (A8) ... 17
 N-(4-methoxybenzyl)heptan-2-amine (A9) ... 17
 N-(4-methoxybenzyl)octan-1-amine 10 (A10) .. 18
 N-(4-methoxybenzyl)aniline 11 (A11) .. 19
 N-(4-methoxybenzyl)-3-nitroaniline 12 (A12) .. 19
 3-phenylprop-2-yn-1-ol 13 .. 20
 3-Phenylprop-2-yn-1-yl 4-methylbenzenesulfonate 14 .. 20
 General procedure for the synthesis of propargyl amines ... 21
 N-isobutyl-3-phenylprop-2-yn-1-amine 15 (A13) ... 21
 N-(3-phenylprop-2-yn-1-yl)cyclohexanamine 16 (A14) .. 21
 N-hexyl-1-(phenylethynyl)cyclohexan-1-amine 17 (A15) ... 22
 N-(4-methoxybenzyl)prop-2-yn-1-amine 18 (A16) .. 22
 tert-butyl 3-(phenethylamino)azetidine-1-carboxylate (A17) 23
 3-((tert-butyldimethylsilyl)oxy)azetidine (A18) .. 23
 3-(methoxycarbonyl)azetidin-1-ium trifluoromethanesulfonate (A19)................... 24
 General procedure for the synthesis of piperidine derivatives .. 24
 3-((tert-butyldimethylsilyl)oxy)piperidine (A20) ... 25
 3-((tert-butyldimethylsilyl)oxy)methyl)piperidine (A21) 25
 Synthesis of compound 6 ... 26
Supplementary Table 1: Optimization of reaction conditions of homodiamination 27
 Reaction monitoring by 19F-NMR .. 28
Supplementary Figure 1: Reaction scheme and monitoring of homodiamination reaction with N-methyl-1-(naphthalen-1-yl)methanamine ... 28

Supplementary Figure 2: Reaction monitoring of homodiamination reaction with N-methylaniline by 19F-NMR-spectroscopy ... 29

Supplementary Figure 3: Reaction monitoring of homodiamination reaction with N-ethylaniline by 19F-NMR-spectroscopy ... 30

Supplementary Figure 4: GC-MS TIC of homodiamination reaction with N-ethylaniline 31

Supplementary Figure 5: Reaction monitoring of homodiamination reaction with indoline by 19F-NMR-spectroscopy ... 32

General procedure for the synthesis of homofunctionalized diamines 33

Synthesis of compound 7 .. 33

Synthesis of compound 8 .. 33

Synthesis of compound 9 .. 34

Synthesis of compound 10 .. 34

Synthesis of compound 11 .. 35

Synthesis of compound 12 .. 35

Synthesis of compound 13 .. 36

Synthesis of compound 14 .. 37

Synthesis of compound 15 .. 37

Synthesis of compound 16 .. 38

Synthesis of compound 17 .. 38

Synthesis of compound 18 .. 39

Synthesis of compound 19 .. 39

Synthesis of compound 20 .. 40

Synthesis of compound 21 .. 40

Synthesis of compound 22 .. 41

Synthesis of compound 23 .. 41

Synthesis of compound 24 .. 42

Synthesis of compound 25 .. 42

Synthesis of compound 26 .. 43

Synthesis of compound 27 .. 43

Synthesis of compound 28 .. 44

Synthesis of compound 29 .. 44

Synthesis of compound 30 .. 45
Supplementary Figure 11: Unsuccessful substrates under conditions of aziridinium ion intermediate generation ... 93

Supplementary Figure 12: Ethylene diamine and trifluoroethylamine moieties in natural products and drugs .. 94

NMR & IR spectra .. 95

Supplementary Figure 13: \(^1\)H-NMR for compound 1 .. 96
Supplementary Figure 17: \(^1\)H-NMR for compound A1 .. 100
Supplementary Figure 19: \(^1\)H-NMR for compound A2 .. 102
Supplementary Figure 21: \(^1\)H-NMR for compound A3 .. 104
Supplementary Figure 23: \(^1\)H-NMR for compound A4 .. 106
Supplementary Figure 25: \(^1\)H-NMR for compound A5 .. 108
Supplementary Figure 27: \(^1\)H-NMR for compound A6 .. 110
Supplementary Figure 29: \(^1\)H-NMR for compound A7 .. 112
Supplementary Figure 31: \(^1\)H-NMR for compound A8 .. 114
Supplementary Figure 33: 1H-NMR for compound A9 .. 116
Supplementary Figure 35: 1H-NMR for compound A10 .. 118
Supplementary Figure 37: 1H-NMR for compound A11 .. 120
Supplementary Figure 39: 1H-NMR for compound A12 .. 122
Supplementary Figure 41: 1H-NMR for compound 3-phenylprop-2-yn-1-ol .. 124
Supplementary Figure 43: 1H-NMR for compound 3-phenylprop-2-yn-1-yl 4-methylbenzenesulfonate .. 126
Supplementary Figure 45: 1H-NMR for compound A13 .. 128
Supplementary Figure 47: 1H-NMR for compound A14 .. 130
Supplementary Figure 49: 1H-NMR for compound A15 .. 132
Supplementary Figure 51: 1H-NMR for compound A16 .. 134
Supplementary Figure 53: 1H-NMR for compound A17 .. 136
Supplementary Figure 56: 1H-NMR for compound A18 .. 139
Supplementary Figure 58: 1H-NMR for compound A19 .. 141
Supplementary Figure 61: 1H-NMR for compound A20 .. 144
Supplementary Figure 63: 1H-NMR for compound A21 .. 146
Supplementary Figure 65: 1H-NMR for compound A2 .. 148
Supplementary Figure 68: 1H-NMR for compound 7 .. 151
Supplementary Figure 72: 1H-NMR for compound 8 .. 155
Supplementary Figure 76: 1H-NMR for compound 9 .. 159
Supplementary Figure 80: 1H-NMR for compound 10 .. 163
Supplementary Figure 84: 1H-NMR for compound 11 .. 167
Supplementary Figure 88: 1H-NMR for compound 12 .. 171
Supplementary Figure 92: 1H-NMR for compound 13 .. 175
Supplementary Figure 96: 1H-NMR for compound 14 .. 179
Supplementary Figure 100: 1H-NMR for compound 15 .. 183
Supplementary Figure 104: 1H-NMR for compound 16 .. 187
Supplementary Figure 108: 1H-NMR for compound 17 .. 191
Supplementary Figure 112: 1H-NMR for compound 18 .. 195
Supplementary Figure 116: 1H-NMR for compound 19 .. 199
Supplementary Figure 120: 1H-NMR for compound 20 .. 203
Supplementary Figure 124: 1H-NMR for compound 21 .. 207
Supplementary Figure 128: 1H-NMR for compound 22 .. 211
Supplementary Figure 132: 1H-NMR for compound 23 ... 215
Supplementary Figure 136: 1H-NMR for compound 24 ... 219
Supplementary Figure 140: 1H-NMR for compound 25 ... 223
Supplementary Figure 144: 1H-NMR for compound 26 ... 227
Supplementary Figure 148: 1H-NMR for compound 27 ... 231
Supplementary Figure 152: 1H-NMR for compound 28 ... 235
Supplementary Figure 156: 1H-NMR for compound 29 ... 239
Supplementary Figure 160: 1H-NMR for compound 30 ... 243
Supplementary Figure 164: 1H-NMR for compound 31 ... 247
Supplementary Figure 168: 1H-NMR for compound 32 ... 251
Supplementary Figure 172: 1H-NMR for compound 33 ... 255
Supplementary Figure 176: 1H-NMR for compound 34 ... 259
Supplementary Figure 180: 1H-NMR for compound 35 ... 263
Supplementary Figure 184: 1H-NMR for compound 36 ... 267
Supplementary Figure 188: 1H-NMR for compound 37 ... 271
Supplementary Figure 192: 1H-NMR for compound 38 ... 275
Supplementary Figure 196: 1H-NMR for compound 39 ... 279
Supplementary Figure 200: 1H-NMR for compound 40 ... 283
Supplementary Figure 204: 1H-NMR for compound 41 ... 287
Supplementary Figure 208: 1H-NMR for compound 42 ... 291
Supplementary Figure 212: 1H-NMR for compound 43 ... 295
Supplementary Figure 216: 1H-NMR for compound 44 ... 299
Supplementary Figure 220: 1H-NMR for compound 45 ... 303
Supplementary Figure 227: 1H-NMR for compound 46 ... 311
Supplementary Figure 231: 1H-NMR for compound 47 ... 315
Supplementary Figure 235: 1H-NMR for compound 48 ... 319
Supplementary Figure 239: 1H-NMR for compound 49 ... 323
Supplementary Figure 243: 1H-NMR for compound 50 ... 327
Supplementary Figure 247: 1H-NMR for compound 51 ... 331
Supplementary Figure 251: 1H-NMR for compound 52 ... 335
Supplementary Figure 255: 1H-NMR for compound 53 ... 339
Supplementary Figure 259: 1H-NMR for compound 54 ... 343
Supplementary Figure 266: 1H-NMR for compound 55 .. 350
Supplementary Figure 270: 1H-NMR for compound 56 .. 354
Supplementary Figure 274: 1H-NMR for compound 57 .. 358
Supplementary Figure 278: 1H-NMR for compound 58 .. 362
Supplementary Figure 282: 1H-NMR for compound 59 .. 366
Supplementary Figure 290: 1H-NMR for compound 60 .. 374
Supplementary Figure 297: 1H-NMR for compound 61 .. 381
Supplementary Figure 305: 1H-NMR for compound 62 .. 389
Supplementary Figure 312: 1H-NMR for compound 63 .. 396
Supplementary Figure 316: 1H-NMR for compound 64 .. 400
Supplementary Figure 320: 1H-NMR for compound 65 .. 404
Supplementary Figure 324: 1H-NMR for compound 66 .. 408
Supplementary Figure 328: 1H-NMR for compound 67 .. 412
Supplementary Figure 332: 1H-NMR for compound 68 .. 416
Supplementary Figure 336: 1H-NMR for compound 69 .. 420
Supplementary Figure 340: 1H-NMR for compound 70 .. 424
Supplementary Figure 348: 1H-NMR for compound 71 .. 432
Supplementary Figure 352: 1H-NMR for compound 72 .. 436
Supplementary Figure 356: 1H-NMR for compound 73 .. 440
Supplementary Figure 360: 1H-NMR for compound 74 .. 444
Supplementary Figure 364: 1H-NMR for compound 75 .. 448
Supplementary Figure 368: 1H-NMR for compound 76 .. 452
Supplementary Figure 372: 1H-NMR for compound 77 .. 456
Supplementary Figure 376: 1H-NMR for compound 78 .. 460
Supplementary Figure 380: 1H-NMR for compound 79 .. 464
Supplementary Figure 384: 1H-NMR for compound 80 .. 468
Supplementary Figure 388: 1H-NMR for compound 81 .. 472
Supplementary Figure 392: 1H-NMR for compound 82 .. 476
Supplementary Figure 396: 1H-NMR for compound 83 .. 480
Supplementary Figure 400: 1H-NMR for compound 84 .. 484
Supplementary Figure 404: 1H-NMR for compound 85 .. 488
Supplementary Figure 408: 1H-NMR for compound 86 .. 492
Supplementary Figure 412: \(^1H \)-NMR for compound 87 ... 496
Supplementary Figure 416: \(^1H \)-NMR for compound 88 ... 500
Supplementary Figure 420: \(^1H \)-NMR for compound 89 ... 504
Supplementary Figure 424: \(^1H \)-NMR for compound 90 ... 508
Supplementary Figure 428: \(^1H \)-NMR for compound 91 ... 512
Supplementary Figure 432: \(^1H \)-NMR for compound 92 ... 516
Supplementary Figure 436: \(^1H \)-NMR for compound 93 ... 520
Supplementary Figure 441: \(^1H \)-NMR for compound 94 ... 525
Supplementary Figure 446: \(^1H \)-NMR for compound 95 ... 530
Supplementary Figure 450: \(^1H \)-NMR for compound 96 ... 534
Supplementary Figure 457: \(^1H \)-NMR for compound 97 ... 541
Supplementary Figure 465: \(^1H \)-NMR for compound 98 ... 549
Supplementary References ... 557
General conditions

Analytical thin-layer chromatography (TLC) was performed on Merck DC pre coated TLC plates with 0.25 mm Kieselgel 60 F_{254}. Visualization was performed by fluorescence quenching under 254 nm irradiation, and staining with p-anisaldehyde or potassium-permanganate stains. Purification of the crude products was performed by medium pressure liquid chromatography (instrument: Biotage® Isolera™ Prime, stationary phase: Teledyne ISCO RediSep Rf® Normal phase silica, 24 g silica / cartridge, 20-40 μm particle size, 60 Å average pore size, mobile phase: according to TLC elution experiment, 15 mL/min). The 1H-, 13C-, 19F- and 31P-NMR spectra were recorded on a Bruker Avance-250 MHz or a Varian Inova 300 MHz or a Varian Inova 500 MHz spectrometer in CDCl$_3$, CD$_2$Cl$_2$, acetonitrile-d_3, methanol-d_4 or acetone-d_6. Chemical shifts are expressed in parts per million (δ) and referenced to residual protiated solvent peaks as internal standards for 1H and 13C nuclei, while 19F and 31P chemical shifts are referenced to CFCl$_3$ and H$_3$PO$_4$ (40 w% aqueous solution) external standards, respectively. Coupling constants (J) are reported in Hertz (Hz) and splitting patterns are designated as s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), p (pentet), hept (heptet), dd (doublet of doublets), dt (doublet of triplets), td (triplet of doublets), tt (triplet of triplets), dq (doublet of quartets), qd (quartet of doublets), pd (pentet of doublets), ddt (doublet of doublet of triplets), ddq (doublet of doublet of quartets), dqd (doublet of quartet of doublets), tdq (triplet of doublet of quartets), dqdd (doublet of doublet of quartet of doublets), and m (multiplet). IR spectra were obtained on a Bruker IFS55 spectrometer on a single-reflection diamond ATR unit.

Conversions determined on an Agilent 6890N Gas Chromatograph (30 m x 0.25 mm column with 0.25 μm HP-5MS coating, He carrier gas) and low resolution mass spectrometry was obtained on an Agilent 5973 Mass Spectrometer (Ion source: EI+, 70eV, 230 °C, interface 300 °C). 4-Fluoroiodobenzene was used as internal standard, which formed upon decomposition of (4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluromethanesulfonate.

All melting points were measured on Büchi 510 apparatus and are uncorrected.

High-resolution mass spectra were acquired on an Agilent 6230 time-of-flight mass spectrometer equipped with a Jet Stream electrospray ion source in positive ion mode. Injections of 0.1-0.3 μl were directed to the mass spectrometer at a flow rate 0.5 ml/min (70% acetonitrile-water mixture, 0.1 % formic acid), using an Agilent 1260 Infinity HPLC system. Jet Stream parameters: drying
gas (N\textsubscript{2}) flow and temperature: 10.0 l/min and 325 °C, respectively; nebulizer gas (N\textsubscript{2}) pressure: 10 psi; capillary voltage: 4000V; sheath gas flow and temperature: 325°C and 7.5 l/min; TOFMS parameters: fragmentor voltage: 120 V; skimmer potential: 120 V; OCT 1 RF Vpp: 750 V. Full-scan mass spectra were acquired over the m/z range 100-2500 at an acquisition rate of 250 ms/spectrum and processed by Agilent MassHunter B.03.01 software.

Starting materials were obtained from commercial suppliers and were used without further purification. Liquid state amines (diisobutylamine, pyrrolidine, piperidine, 2-methyl-piperidine, 3-methyl-piperidine, 4-benzyl-piperidine, N-methyl-1-(naphthalen-1-yl)methanamine and N-methylaniline) were dried over and distilled from CaH\textsubscript{2}, under argon atmosphere or high vacuum. Solid state amines (3-hydroxy-piperidine, 3-hydroxymethylene-piperidine, 3-azabicyclo[3.2.2]nonane and adamant-1-ylamine) were sublimed under high vacuum. 4-Methoxybenzaldehyde was distilled under high vacuum. Dichloromethane was HPLC grade, while acetonitrile (contained <200 ppm water) and methanol were reagent grade, and used without further purification, tetrahydrofuran was distilled from benzophenone ketyl-sodium prior usage. Toluene was dried over activated 4Å molecular sieves and stored under argon.

Preparation of starting materials

Synthesis of compound I

(4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate1

\[
\begin{align*}
\text{F} & \quad \Theta \quad \text{OTf} \\
\text{CF}_3 & \\
\end{align*}
\]

A 40 mL screwed cap vial with a stirring bar was evacuated and refilled with argon 3 times. Trifluoroacetic anhydride (10 mL, 70.5 mmol, 7.2 equiv) and trifluoroacetic acid (77 \muL, 1 mmol, 10 mol\%) was added via syringe. The mixture was cooled to 0 °C, then hydrogen peroxide (980 \muL, 50 wt\% in water, 17 mmol, 1.7 equiv) was added dropwise within 2 minutes. 2-Iodo-3,3,3-trifluoropropene (1080 \muL, 10 mmol) was added dropwise via syringe. The off-white suspension was kept between 0 °C and 4 °C for 16 hours. After that, the mixture was cooled to -20°C, then dichloromethane (10 mL) was added slowly. Fluorobenzene (1.45 mL, 15.5 mmol, 1.55 equiv) was added dropwise to the suspension, followed by the addition of trifluoromethanesulfonic acid (880 \muL, 10 mmol, 1 equiv) to form an emerald green solution. Consider that the temperature is not allowed to reach more than -20 °C throughout the addition of triflic acid! δ

The reaction mixture was kept between 0 °C and 4 °C for 6 hours. After that, all volatiles were removed under reduced pressure at 0 °C, protected from light. The brownish green oil was shaken
with cold diethyl ether (20 mL, -20 °C), getting white precipitate. The suspension was kept at -20°C for 12 hours, then the white precipitate was filtered and washed with cold ether 3 times. Title compound was obtained as a white solid (4.37 g, 9.76 mmol, 97.6% yield).

M.p.= 144-147 °C. ¹H NMR (250 MHz, Acetonitrile-d₃) δ 8.20 (dd, J = 7.8, 4.2 Hz, 2H), 7.51 – 7.22 (m, 4H). ¹⁹F NMR (235 MHz, Acetonitrile-d₃) δ -64.53 (3F), -79.40 (3F), -105.44 (1F). ¹³C NMR (63 MHz, Acetonitrile-d₃) δ 166.4 (d, J = 254.6 Hz), 145.1 (q, J = 4.7 Hz), 139.9 (d, J = 9.5 Hz), 121.9 (q, J = 321.0 Hz), 121.2 (q, J = 273.8 Hz), 111.8 (q, J = 39.8 Hz), 108.3 (d, J = 3.2 Hz). IR (ATR, cm⁻¹) 3094, 3063, 3026, 2973, 2929, 2873, 1598, 1502, 1449, 1353, 1299, 1262, 1232, 1188, 1161, 1141, 1103, 1055, 1038, 973, 913, 888, 851, 795, 744, 692, 615, 579, 522, 468, 413.

General procedure for the synthesis of p-methoxybenzyl protected amines²

A 40 mL screwed cap vial was charged with stirring bar, 4 Å molecular sieves (1.5 g, beads), p-methoxybenzaldehyde (1.22 mL, 10 mmol) and dichloromethane (10 mL) at room temperature. Amine (12 mmol, 1.2 equiv) or amine hydrochloride (12 mmol, 1.2 equiv) and triethylamine (1.67 mL, 12 mmol, 1.2 equiv) were added and the reaction mixture was monitored by GC-MS. After complete conversion of p-methoxybenzaldehyde (5 min – 24 h) reaction mixture was filtered through a pad of Celite, filter cake was washed with diethylether. Filtrates were combined and evaporated to dryness under reduced pressure. Residue was dissolved in methanol (20 mL) and cooled to 0 °C, then sodium borohydride (454 mg, 12 mmol, 1.2 equiv) was added portionwise over 5 minutes to the stirred mixture. Reaction was allowed to warm room temperature over 16 hours, then concentrated onto Celite in vacuo. The obtained residue was purified by flash column chromatography (Hexanes:EtOAc = from 100:0 to 50:50).

N-(4-methoxybenzyl)prop-2-en-1-amine² (A1)

Amine A1 was synthesized according to general procedure from p-methoxybenzaldehyde (1.22 mL, 10 mmol), allylamine (900 uL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow liquid (1.46 g, 8.24 mmol, 82% yield).

Rf= 0.30 (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 121(100), 176(27), 122(18), 78(15), 56(15), 77(14), 135(12), 134(11), 177(10), 148(9), 91(9). ¹H NMR (250 MHz, CDCl₃) δ 7.15 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H), 5.84 (ddt, J = 6.9, 5.9 Hz, 1H), 5.11 (dd, J = 17.2, 1.7 Hz, 1H), 5.02 (dd, J = 10.3, 1.2 Hz, 1H), 3.69 (s, 3H), 3.63 (s, 2H), 3.17 (bs, 2H), 1.52 (bs, 1H). ¹³C NMR (63 MHz, CDCl₃) δ 158.6, 136.8, 132.3, 129.3, 115.9, 113.7, 55.1, 52.6, 51.6.
IR (ATR, cm\(^{-1}\)) 3073, 3002, 2971, 2932, 2911, 2834, 1738, 1611, 1510, 1455, 1442, 1418, 1364, 1300, 1241, 1173, 1103, 1034, 994, 916, 811, 771, 702, 637, 561, 516.

Methyl (4-methoxybenzyl)-L-leucinate\(^3\) (A2)

Amine A2 was synthesized according to general procedure from \(p\)-methoxybenzaldehyde (1.22 mL, 10 mmol), methyl L-leucinate hydrochloride (2.18 g, 12 mmol, 1.2 equiv), triethylamine (1.67 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (2.28 g, 8.61 mmol, 86% yield).

\(R_f = 0.38\) (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 207(15), 206(100), 137(7), 136(75), 122(62), 121(100), 106(5), 91(18), 90(8), 89(8), 78(26), 77(26), 65(6). \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta\) 7.2 (d, \(J = 8.6\) Hz, 2H), 6.8 (d, \(J = 8.7\) Hz, 2H), 3.7 (s, 3H), 3.6 (s, 3H), 3.5 (d, \(J = 12.7\) Hz, 1H), 3.2 (t, \(J = 7.2\) Hz, 1H), 1.8 – 1.6 (m, 2H), 1.4 (dd, \(J = 7.5, 6.5\) Hz, 2H), 0.8 (d, \(J = 6.6\) Hz, 3H), 0.8 (d, \(J = 6.6\) Hz, 3H). \(^{13}\)C NMR (63 MHz, CDCl\(_3\)) \(\delta\) 176.5, 158.7, 132.0, 129.0, 128.2, 128.1, 126.5, 113.6, 61.8, 60.4, 55.0, 51.3, 39.7, 14.1. IR (ATR, cm\(^{-1}\)) 3063, 2997, 2953, 2870, 2836, 1733, 1612, 1511, 1463, 1367, 1300, 1244, 1195, 1170, 1150, 1106, 1035, 991, 824, 777, 577, 513.

Ethyl (4-methoxybenzyl)-L-phenylalaninate\(^4\) (A3)

Amine A3 was synthesized according to general procedure from \(p\)-methoxybenzaldehyde (1.22 mL, 10 mmol), L-phenylalanine ethyl ester hydrochloride (2.76 g, 12 mmol, 1.2 equiv), triethylamine (1.67 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (2.90 g, 9.27 mmol, 93% yield).

\(R_f = 0.28\) (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 121(100), 222(41), 122(25), 91(23), 77(14), 78(14), 240(12), 65(6), 136(6), 223(6), 92(5). \(^1\)H NMR (250 MHz, Chloroform-\(d\)) \(\delta\) 7.25 – 7.08 (m, 7H), 6.78 (d, \(J = 8.7\) Hz, 2H), 4.06 (q, \(J = 7.1\) Hz, 2H), 3.72 (d, \(J = 12.7\) Hz, 1H), 3.71 (s, 3H), 3.55 (d, \(J = 12.9\) Hz, 1H), 3.49 (t, \(J = 7.0\) Hz, 1H), 2.92 (d, \(J = 7.0\) Hz, 2H), 1.89 (s, 1H), 1.11 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (63 MHz, CDCl\(_3\)) \(\delta\) 174.4, 158.6, 137.3, 131.6, 129.2, 129.2, 128.2, 126.5, 113.6, 61.8, 60.4, 55.0, 51.3, 39.7, 14.1. IR (ATR, cm\(^{-1}\)) 3063, 3029, 2979, 2934, 2834, 1727, 1611, 1585, 1510, 1455, 1371, 1300, 1244, 1173, 1129, 1031, 811, 744, 699, 564, 513.
N-(4-methoxybenzyl)adamantan-1-amine5 (A4)

Amine A3 was synthesized according to general procedure from p-methoxybenzaldehyde (1.22 mL, 10 mmol), adamantane-1-amine (900 µL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a colorless oil (1.71 g, 6.29 mmol, 63% yield).

$R_f = 0.30$ (hexanes:ethyl acetate= 7:3). **M.p.= 73-76 °C.** LRMS (EI, 70 eV): m/z (%): 272(8), 271(43), 270(7), 215(12), 214(64), 177(17), 136(5), 135(22), 122(21), 121(100), 107(11), 106(30), 93(11), 91(14), 79(12), 78(12), 77(18), 67(7), 65(5), 55(5). 1H NMR (250 MHz, CDCl$_3$) δ 7.25 (d, $J = 8.3$ Hz, 2H), 6.85 (d, $J = 8.7$ Hz, 2H), 3.79 (d, $J = 0.9$ Hz, 3H), 3.70 (s, 2H), 2.14 – 2.04 (m, 3H), 1.76 – 1.56 (m, 12H), 1.16 (s, 1H).

1C NMR (63 MHz, CDCl$_3$) δ 158.5, 133.9, 129.5, 113.9, 77.7, 77.2, 76.7, 55.3, 50.9, 44.6, 43.0, 36.9, 29.8. **IR (ATR, cm$^{-1}$)** 3292, 2997, 2894, 2846, 1611, 1585, 1510, 1466, 1455, 1367, 1360, 1341, 1300, 1239, 1209, 1177, 1140, 1099, 1075, 1031, 1014, 973, 852, 831, 808, 787, 773, 760, 717, 706, 611, 523.

N-(4-methoxybenzyl)cyclopropanamine6 (A5)

Amine A5 was synthesized according to general procedure from p-methoxybenzaldehyde (1.22 mL, 10 mmol), cyclopropylamine (840 µL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (1.41 g, 7.94 mmol, 79% yield).

$R_f = 0.39$ (hexanes:ethyl acetate= 10:1). **LRMS (EI, 70 eV):** m/z (%): 272(23), 176(14), 162(24), 135(5), 134(6), 122(27), 121(100), 91(15), 89(7), 78(23), 77(22), 65(6), 51(8). 1H NMR (250 MHz, CDCl$_3$) δ 7.14 (d, $J = 8.6$ Hz, 2H), 6.77 (d, $J = 8.6$ Hz, 2H), 3.68 (s, 2H), 3.67 (s, 2H), 2.05 (tt, $J = 6.3$, 3.8 Hz, 1H), 1.80 (s, 1H), 0.45 – 0.23 (m, 4H). 1C NMR (63 MHz, CDCl$_3$) δ 158.3, 132.6, 129.1, 113.5, 54.9, 52.9, 29.8, 6.2. **IR (ATR, cm$^{-1}$)** 3316, 3085, 3005, 2935, 2834, 1655, 1611, 1585, 1510, 1463, 1441, 1371, 1343, 1300, 1242, 1174, 1109, 1034, 1014, 926, 848, 817, 742, 700, 637, 581, 563, 519, 448, 417.
(R)-N-(4-methoxybenzyl)-1-phenylethan-1-amine\(^7\) (A6)

Amine A6 was synthesized according to general procedure from \(p\)-methoxybenzaldehyde (1.22 mL, 10 mmol), (R)-(+)-\(\alpha\)-methylbenzylamine (1.56 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (2.26 g, 9.35 mmol, 93% yield).

\(R_f = 0.31\) (hexanes:ethyl acetate= 10:1).

LRMS (EI, 70 eV): m/z (%): 121(100), 226(56), 105(24), 77(22), 136(19), 122(19), 78(14), 91(11), 227(9), 79(9), 104(6), 51(6), 241(6). \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta\) 7.4 – 7.1 (m, 7H), 6.9 (d, \(J = 8.9\) Hz, 2H), 3.9 – 3.7 (m, 4H), 3.7 – 3.5 (m, 2H), 1.6 (s, 1H), 1.4 (d, \(J = 6.6\) Hz, 3H). \(^{13}\)C NMR (63 MHz, CDCl\(_3\)) \(\delta\) 158.6, 145.7, 132.8, 129.3, 128.5, 126.9, 126.7, 113.8, 57.4, 55.2, 51.0, 24.5. IR (ATR, cm\(^{-1}\)) 3061, 3026, 2999, 2959, 2931, 2833, 1738, 1611, 1584, 1510, 1492, 1451, 1368, 1300, 1242, 1173, 1113, 1075, 1034, 988, 820, 757, 699, 600, 570, 540, 520.

Ethyl (4-methoxybenzyl)glycinate\(^8\) (A7)

Amine A7 was synthesized according to general procedure from \(p\)-methoxybenzaldehyde (2.43 mL, 20 mmol), ethyl glycinate hydrochloride (3.35 g, 24 mmol, 1.2 equiv), triethylamine (3.35 mL, 24 mmol, 1.2 equiv), sodium borohydride (908 mg, 24 mmol, 1.2 equiv) and applied ethanol instead of methanol in the second step to afford the title compound as a pale yellow oil (3.07 g, 13.8 mmol, 69% yield).

\(R_f = 0.45\) (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 223(6), 150(36), 148(11), 137(16), 136(100), 122(50), 121(100), 107(5), 106(8), 91(21), 90(8), 89(12), 79(6), 78(40), 77(30), 75(7), 65(7), 63(6), 52(8), 51(9). \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta\) 7.20 (d, \(J = 8.5\) Hz, 2H), 6.82 (d, \(J = 8.5\) Hz, 2H), 4.14 (q, \(J = 7.1\) Hz, 2H), 3.74 (s, 3H), 3.69 (s, 2H), 3.34 (s, 2H), 2.18 (s, 1H), 1.22 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (63 MHz, CDCl\(_3\)) \(\delta\) 158.8, 131.5, 129.4, 113.8, 60.6, 55.1, 52.6, 49.9, 14.1. IR (ATR, cm\(^{-1}\)) 2971, 2936, 2910, 2836, 1734, 1611, 1511, 1462, 1419, 1373, 1300, 1242, 1177, 1137, 1109, 1028, 812, 760, 571, 518.

\(N\)-(4-methoxybenzyl)hexan-1-amine\(^9\) (A8)

Amine A8 was synthesized according to general procedure from \(p\)-methoxybenzaldehyde (1.22 mL, 10 mmol), \(n\)-hexylamine (1.59 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (2.26 g, 9.35 mmol, 93% yield).
borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (1.40 g, 6.33 mmol, 63% yield).

Rf = 0.30 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 221(1), 150(9), 136(4), 122(9), 121(100), 91(2), 78(3), 77(3). ¹H NMR (250 MHz, CDCl₃) δ 7.14 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 3.69 (s, 3H), 3.63 (s, 2H), 2.52 (t, J = 7.2 Hz, 2H), 1.60 (s, 1H), 1.40 (q, J = 7.0, 6.4 Hz, 2H), 1.29 – 1.07 (m, 6H), 0.79 (t, J = 6.4 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 158.6, 132.7, 129.3, 113.8, 55.2, 53.5, 49.4, 31.8, 30.1, 27.1, 22.7, 14.1. IR (ATR, cm⁻¹) 3064, 3029, 2999, 2899, 2955, 2854, 2834, 1738, 1611, 1585, 1510, 1456, 1377, 1300, 1244, 1173, 1105, 1036, 818, 751, 726, 699, 637, 574, 513, 418, 397.

N-(4-methoxybenzyl)heptan-2-amine (A9)

Amine A9 was synthesized according to general procedure from p-methoxybenzaldehyde (1.22 mL, 10 mmol), 2-aminoheptane (1.81 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (2.34 g, 9.93 mmol, 99% yield).

Rf = 0.36 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 204(1), 165(2), 164(18), 164(3), 162(2), 136(3), 135(2), 134(1), 122(11), 121(100), 91(3), 90(1), 89(1), 82(1), 78(4), 77(4), 57(1). ¹H NMR (250 MHz, CDCl₃) δ 7.16 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H), 3.70 (s, 3H), 3.61 (q, J = 12.8 Hz, 2H), 2.56 (dq, J = 12.2, 7.4, 6.5 Hz, 1H), 1.39 (s, 2H), 1.33 – 1.10 (m, 7H), 0.99 (d, J = 6.3 Hz, 3H), 0.81 (t, J = 6.6 Hz, 3H). ¹³C NMR (63 MHz, CDCl₃) δ 158.6, 133.0, 129.3, 113.8, 55.2, 52.5, 50.8, 37.1, 32.1, 25.7, 22.7, 20.3, 14.1. IR (ATR, cm⁻¹) 3063, 2996, 2955, 2955, 2856, 1738, 1612, 1585, 1510, 1463, 1374, 1300, 1244, 1171, 1106, 1036, 822, 808, 750, 727, 696, 574, 515.

N-(4-methoxybenzyl)octan-1-amine (A10)

Amine A10 was synthesized according to general procedure from p-methoxybenzaldehyde (1.22 mL, 10 mmol), 2-aminoheptane (1.81 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as a pale yellow oil (2.34 g, 9.93 mmol, 99% yield).
Rf = 0.39 (hexanes:ethyl acetate = 10:1). LRMS (EI, 70 eV): m/z (%): 249(3), 248(4), 150(33), 137(11), 136(12), 128(7), 122(33), 121(100), 106(3), 91(7), 78(9), 77(9), 75(3). **1H NMR** (250 MHz, CDCl$_3$) δ 7.14 (d, $J = 8.5$ Hz, 2H), 6.76 (d, $J = 8.5$ Hz, 2H), 3.68 (s, 3H), 3.62 (s, 2H), 2.51 (t, $J = 7.2$ Hz, 2H), 1.67 (s, 1H), 1.49 – 1.32 (m, 2H), 1.18 (s, 10H), 0.79 (t, $J = 6.1$ Hz, 3H). **13C NMR** (63 MHz, CDCl$_3$) δ 158.6, 132.6, 129.3, 113.7, 55.2, 53.5, 49.4, 31.9, 30.1, 29.6, 29.3, 27.4, 22.7, 14.1. IR (ATR, cm$^{-1}$) 3063, 2953, 2922, 2853, 1738, 1612, 1585, 1510, 1456, 1365, 1300, 1244, 1173, 1106, 1036, 820, 754, 723, 700, 573, 515.

N-(4-methoxybenzyl)aniline11 (A11)

Amine A11 was synthesized according to general procedure from p-methoxybenzaldehyde (1.22 mL, 10 mmol), aniline (1.09 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as an off-white solid (1.34 g, 6.29 mmol, 63% yield).

Rf = 0.31 (hexanes:ethyl acetate = 10:1). M. p. = 54-58 °C. LRMS (EI, 70 eV): m/z (%): 212(12), 211(89), 210(100), 196(4), 195(5), 168(4), 167(13), 166(2), 139(2), 104(3), 92(2), 91(2), 78(4), 77(31), 76(3), 65(5), 64(2), 63(3), 51(10), 50(3). **1H NMR** (250 MHz, CDCl$_3$) δ 7.19 (t, $J = 7.9$ Hz, 2H), 6.89 (d, $J = 8.6$ Hz, 2H), 6.74 (t, $J = 7.3$ Hz, 1H), 6.64 (d, $J = 7.7$ Hz, 2H), 4.24 (s, 2H), 3.93 (s, 1H), 3.79 (s, 3H). **13C NMR** (63 MHz, CDCl$_3$) δ 158.9, 148.2, 131.4, 129.3, 128.9, 117.6, 114.1, 113.0, 55.3, 47.8. IR (ATR, cm$^{-1}$) 3075, 3047, 3020, 3002, 2961, 2934, 2907, 2856, 2836, 1599, 1582, 1511, 1499, 1470, 1460, 1438, 1424, 1300, 1246, 1171, 1153, 1110, 1095, 1068, 1032, 872, 835, 818, 746, 692, 544, 523, 513.

N-(4-methoxybenzyl)-3-nitroaniline12 (A12)

Amine A12 was synthesized according to general procedure from p-methoxybenzaldehyde (1.22 mL, 10 mmol), 3-nitroaniline (1.09 mL, 12 mmol, 1.2 equiv) and sodium borohydride (454 mg, 12 mmol, 1.2 equiv) to afford the title compound as an orange solid (1.34 g, 6.29 mmol, 63% yield).

Rf = 0.59 (hexanes:ethyl acetate = 7:3). M. p. = 98-102 °C. LRMS (EI, 70 eV): m/z (%): 257(15), 256(100), 255(50), 210(7), 209(21), 195(10), 168(6), 167(20), 166(11), 140(7), 139(9), 77(9), 76(10), 51(7). **1H NMR** (250 MHz, CDCl$_3$) δ 7.51 – 7.39 (m, 1H), 7.35 (t, $J = 2.1$ Hz, 1H), 7.27 – 7.11 (m, 3H), 6.83 (dd, $J = 6.4$, 2.1 Hz, 3H), 4.44 (d, $J = 26.7$ Hz, 1H), 4.22 (s, 2H), 3.73 (s, 3H).
13C NMR (63 MHz, CDCl$_3$) δ 159.2, 149.4, 148.8, 130.0, 128.9, 118.9, 114.3, 112.1, 106.6, 55.3, 47.6. IR (ATR, cm$^{-1}$) 3406, 3098, 3075, 3033, 3012, 2952, 2928, 2900, 2853, 2836, 1611, 1582, 1536, 1509, 1341, 1275, 1241, 1170, 1097, 1031, 844, 812, 787, 733, 669, 506, 468.

3-phenylprop-2-yn-1-ol13

A 250 mL round bottom flask was charged with stirring bar, Pd(PPh$_3$)$_2$Cl$_2$ (140 mg, 0.2 mmol, 1 mol%) and CuI (76.2 mg, 0.04 mmol, 2 mol%), then the sealed flask was purged with argon for 5 minutes. Triethylamine (80 mL, purged with argon) followed by iodobenzene (2.28 mL, 20 mmol) was added under argon atmosphere and stirred for 5 minutes at room temperature. Propargyl alcohol (1.31 mL, 22 mmol, 1.1 equiv) was added dropwise over 5 minutes, then the mixture was stirred for 16 hours at room temperature. Reaction mixture was filtered through a pad of Celite, solids were washed with EtOAc and the combined filtrates were concentrated in vacuo. Solid residue was purified by flash column chromatography (eluent: hexanes:ethyl acetate= 7:3) to afford the title compound as a colorless liquid (2.64 g, 20 mmol, 99% yield).

R_f = 0.41 (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 132(58), 131(100), 115(25), 104(28), 103(53), 102(14), 89(7), 78(28), 77(38), 76(7), 75(9), 74(10), 63(13), 62(7), 51(17). 1H NMR (250 MHz, CDCl$_3$) δ 7.38 (dd, J = 6.8, 2.8 Hz, 2H), 7.23 (dd, J = 5.1, 1.8 Hz, 3H), 4.44 (s, 2H), 2.77 (s, 1H).

3-Phenylprop-2-yn-1-yl 4-methylbenzenesulphonate14

A 50 mL round bottom flask was charged with stirring bar, 3-phenylprop-2-yn-1-ol (2.78 g, 21 mmol), tosyl chloride (4.80 g, 25.2 mmol, 1.2 equiv) and diethyl ether (33 mL), then cooled to 0 °C. Pulverized potassium hydroxide (6.6 g, 118 mmol, 5.6 equiv) was added in one portion to the vigorously stirred mixture and stirring was continued for 1 hour at the same temperature. Reaction mixture was quenched by pouring cold water, extracted with diethyl ether. Combined organic layers were washed with brine, dried over Na$_2$SO$_4$ and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (eluent: hexanes:ethyl acetate= 7:3). The title compound was obtained as a white solid (2.67 g, 9.32 mmol, 44% yield).

R_f = 0.55 (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 192(7), 139(41), 131(41), 116(7), 115(100), 114(55), 105(14), 103(10), 103(8), 102(7), 92(11), 91(12), 91(12), 89(15), 77(8), 77(7), 65(18). 1H NMR (250 MHz, CDCl$_3$) δ 7.77 (d, J = 8.4 Hz, 2H), 7.31 – 7.09 (m, 7H), 4.87
13C NMR (63 MHz, CDCl₃) δ 145.1, 133.5, 131.8, 129.9, 129.1, 128.3, 128.2, 121.5, 89.0, 80.7, 58.7, 21.6.

General procedure for the synthesis of propargyl amines

A 20 mL vial was charged with stirring bar, appropriate amine (12 mmol, 4 equiv), potassium carbonate (419 mg, 3 mmol, 1 equiv) and acetonitrile (9 mL). 3-Phenylprop-2-yn-1-yl 4-methylbenzenesulfonate (859 mg, 3 mmol) was added in one portion, then the mixture was heated to 70°C and stirred for 16 hours. Reaction mixture was concentrated onto Celite and the residue was purified by flash column chromatography (hexanes:EtOAc = 100:0 -> 50:50).

N-isobutyl-3-phenylprop-2-yn-1-amine (A13)

Amine A13 was synthesized according to general procedure from isobutylamine (1.19 mL, 12 mmol, 4 equiv), potassium carbonate (419 mg, 3 mmol, 1 equiv) and 3-phenylprop-2-yn-1-yl 4-methylbenzenesulfonate (859 mg, 3 mmol) to afford the title compound as a brown liquid (425 mg, 2.27 mmol, 76% yield).

IR (ATR, cm⁻¹) 3057, 3023, 2953, 2870, 2815, 1792, 1738, 1598, 1489, 1466, 1442, 1365, 1330, 1252, 1217, 1112, 1069, 1028, 950, 913, 753, 689, 525.

1H NMR (250 MHz, Methylene Chloride-d₂) δ 7.3 – 7.2 (m, 2H), 7.2 – 7.1 (m, 3H), 3.4 (s, 2H), 2.4 (d, J = 6.7 Hz, 2H), 1.6 (dp, J = 13.3, 6.7 Hz, 1H), 1.2 (s, 1H), 0.8 (s, 3H), 0.8 (s, 3H).

13C NMR (63 MHz, Methylene Chloride-d₂) δ 133.9, 130.6, 130.2, 125.9, 90.8, 85.2, 59.4, 41.5, 30.8, 22.9.

Rf = 0.52 (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 115(100), 144(78), 116(15), 89(10), 145(9), 63(6), 65(4), 114(4), 130(4), 187(4), 77(3).

N-(3-phenylprop-2-yn-1-yl)cyclohexanamine (A14)

Amine A14 was synthesized according to general procedure from cyclohexylamine (1.37 mL, 12 mmol, 4 equiv), potassium carbonate (419 mg, 3 mmol, 1 equiv) and 3-phenylprop-2-yn-1-yl 4-methylbenzenesulfonate (859 mg, 3 mmol) to afford the title compound as a brown liquid (269 mg, 1.26 mmol, 42% yield).

Rf = 0.24 (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 115(100), 170(34), 156(33), 157(23), 130(13), 80(12), 116(11), 89(10), 213(9), 55(8), 128(6), 212(5), 85(5).

1H NMR (250 MHz, Methylene Chloride-d₂) δ 7.4 (dq, J = 8.3, 3.4, 2.6 Hz, 2H), 7.4 – 7.3 (m, 3H), 3.7 (s, 2H), 2.7 (tt, J = 10.0, 3.8 Hz, 1H), 2.0 – 1.6 (m, 5H), 1.5 – 1.0 (m, 6H).

13C NMR (63 MHz, Methylene
Chloride-d_2 δ 133.8, 130.6, 130.2, 125.9, 91.0, 84.9, 57.6, 38.3, 35.5, 28.6, 27.2. IR (ATR, cm$^{-1}$) 3080, 3057, 3020, 2924, 2851, 1738, 1489, 1443, 1368, 1326, 1253, 1229, 1217, 1119, 1069, 1028, 951, 913, 889, 753, 689, 596, 540, 525, 509, 459, 424.

N-hexyl-1-((phenylethynyl)cyclohexan-1-amine17 (A15)

A 10 mL microwave instrument vial was charged with stirring bar, phenylacetylene (336 uL, 3 mmol, 1 equiv), cyclohexanone (311 uL, 3 mmol, 1 equiv), hexylamine (396 uL, 3 mmol, 1 equiv) and copper(I) iodide (114 mg, 0.6 mmol, 20 mol%), then sealed with Teflon septa. Vial was evacuated and backfilled with argon (repeated three times), then placed in the microwave cavity and irradiated at ceiling temperature 100°C for 25 minutes. After completion of reaction, the mixture was cooled to room temperature, diluted with methanol and concentrated onto Celite under reduced pressure. Residue was purified by flash column chromatography (eluent: hexanes:ethyl acetate= 7:3) to afford the title compound as a brown liquid (531 mg, 1.87 mmol, 62% yield).

1H NMR (250 MHz, CDCl$_3$) δ 7.42–7.30 (m, 2H), 7.26–7.15 (m, 3H), 2.73 (t, J = 6.8 Hz, 2H), 1.87 (d, J = 11.9 Hz, 2H), 1.70–1.51 (m, 5H), 1.52–0.92 (m, 12H), 0.92–0.70 (m, 3H).

13C NMR (63 MHz, CDCl$_3$) δ 131.6, 128.2, 127.7, 123.8, 93.6, 84.5, 55.1, 43.3, 38.3, 31.8, 30.7, 27.2, 26.0, 23.1, 22.7, 14.1. IR (ATR, cm$^{-1}$) 3080, 3056, 3020, 2927, 2854, 1738, 1489, 1443, 1375, 1365, 1290, 1265, 1228, 1217, 1158, 1120, 1069, 951, 909, 753, 689, 658, 637, 559, 536, 516, 491.

N-(4-methoxybenzyl)prop-2-yn-1-amine18 (A16)

A 250 mL round bottom flask was charged with stirring bar, p-methoxybenzaldehyde (1.84 mL, 15.1 mmol) and methanol (100 mL), followed by propargylamine (1.16 mL, 18.2 mmol, 1.2 equiv). The mixture was stirred for 4 hours, then cooled to 0°C and sodium borohydride (1.00 g, 26.5 mmol, 1.75 equiv) was added portionwise. Reaction mixture was allowed to warm room temperature over 16 hours, then concentrated onto Celite under reduced pressure. The obtained residue was purified by flash column chromatography (eluent: hexanes:ethyl acetate= 7:3) to afford the title compound as a colorless liquid (2.01 g, 11.5 mmol, 76% yield).
RF = 0.41 (hexanes:ethyl acetate= 7:3). **LRMS** (EI, 70 eV): m/z (%): 121(100), 174(68), 146(45), 134(26), 122(24), 77(22), 78(21), 144(15), 135(14), 91(14), 175(12), 68(12). \textbf{1H NMR} (250 MHz, CDCl$_3$) δ 7.18 (d, $J = 8.4$ Hz, 2H), 6.78 (d, $J = 8.5$ Hz, 2H), 3.73 (s, 2H), 3.70 (s, 3H), 3.32 (d, $J = 2.3$ Hz, 2H), 2.19 (t, $J = 2.0$ Hz, 1H), 1.43 (s, 1H).

IR (ATR, cm$^{-1}$) 3288, 3030, 3002, 2934, 2912, 2834, 1738, 1611, 1585, 1510, 1455, 1364, 1300, 1241, 1174, 1102, 1032, 811, 776, 759, 702, 635, 580, 560, 515.

HRMS m/z [M+H]$^+$ calculated for C$_{16}$H$_{25}$N$_2$O$_2$+: 277.1916, found: 277.1910.

tert-butyl 3-(phenethylamino)azetidine-1-carboxylate (A17)

A 100 mL round bottom flask was charged with stirring bar, tert-butyl 3-oxoazetidine-1-carboxylate (873 mg, 5.0 mmol) and dichloromethane (50 mL). To the stirred mixture, acetic acid (28.6 µL, 0.5 mmol, 10 mol%), followed by phenylethylamine (882 µL, 7.0 mmol, 1.4 equiv) was added at room temperature and stirred for 3 hours. Then the reaction mixture was cooled to 0°C and sodium triacetoxyborohydride (4.45 g, 21 mmol, 4.2 equiv) was added portionwise. The mixture was allowed to warm room temperature over 16 hours, then volatiles were evaporated under reduced pressure. The obtained residue was purified by flash column chromatography (eluent: hexanes:ethyl acetate= 7:3) to afford the title compound as a yellow syrup (539 mg, 1.95 mmol, 39% yield).

RF = 0.31 (hexanes:ethyl acetate= 7:3). **LRMS** (EI, 70 eV): m/z (%): 203(3), 148(3), 147(28), 129(2), 129(2), 105(12), 104(23), 103(2), 91(4), 79(2), 77(3), 57(18), 56(23), 55(2), 91(4), 79(2), 77(3), 57(18), 56(100), 55(4). \textbf{1H NMR} (250 MHz, Methanol-d$_4$) δ 7.23 (ddt, $J = 14.8$, 10.4, 7.0 Hz, 5H), 4.04 (dd, $J = 8.8$, 7.0 Hz, 2H), 3.78 – 3.47 (m, 3H), 2.74 (d, $J = 2.9$ Hz, 4H), 1.43 (s, 9H). \textbf{13C NMR} (63 MHz, Methanol-d$_4$) δ 158.1, 140.9, 129.6, 127.3, 80.8, 49.5, 48.6, 37.0, 28.7. **IR** (ATR, cm$^{-1}$) 3307, 3061, 3026, 2973, 2877, 2863, 1692, 1604, 1476, 1455, 1399, 1364, 1292, 1252, 1156, 1126, 1109, 1029, 936, 861, 771, 747, 699, 564, 499, 464. **HRMS** m/z [M+H]$^+$ calculated for C$_{16}$H$_{25}$N$_2$O$_2$+: 277.1916, found: 277.1910.

3-((tert-butyldimethylsilyl)oxy)azetidine (A18)

A 40 mL vial was charged with stirring bar and 3-hydroxyazetidin-1-ium chloride (657 mg, 6.0 mmol), vial was sealed with Teflon septa and screw cap, then evacuated and backfilled with argon (three cycles). Solution of imidazole (1.23 g, 18 mmol, 3 equiv) and dimethylformamide (23 µL, 0.3 mmol, 5 mol%) in dichloromethane (10
mL) was added under argon atmosphere and stirred at room temperature. Solution of tert-butylidimethylsilyl chloride (1.03 g, 6.6 mmol, 1.1 equiv) in dichloromethane (10 mL) was added dropwise under argon atmosphere. Reaction mixture was stirred for 3 hours, then concentrated under reduced pressure. Residue was suspended in diisopropyl ether and filtered through a pad of Celite. Solids were washed with diisopropyl ether two times and combined filtrates concentrated under reduced pressure to afford the title compound as a colorless (689 mg, 3.68 mmol, 61% yield).

R_f = 0.45 (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 186(1), 174(5), 173(20), 172(100), 98(16), 97(6), 96(28), 89(17), 84(10), 82(15), 75(17), 74(4), 73(13), 70(7), 59(11), 57(4).

¹H NMR (250 MHz, Chloroform-^d) δ 4.45 (s, 1H), 3.89 – 2.80 (m, 4H), 2.53 (bs, 1H), 0.83 (s, 9H), -0.01 (s, 6H).

¹³C NMR (63 MHz, Chloroform-d) δ 71.4, 58.1, 25.9, 18.1, -4.9. IR (ATR, cm^{−1}) 2952, 2929, 2856, 1738, 1472, 1463, 1371, 1252, 1229, 1217, 1202, 1158, 1068, 1005, 879, 834, 774, 736, 671, 398.

3-(methoxycarbonyl)azetidin-1-ium trifluoromethanesulfonate (A19)

A 30 mL vial was charged with stirring bar, 1-(tert-butoxycarbonyl)azetidine-3-carboxylic acid (402 mg, 2.0 mmol), methanol (10 mL) and trifluoromethanesulfonic acid (186 µL, 2.1 mmol, 1.05 equiv) then vial was sealed with Teflon septa and screw cap. Reaction mixture was stirred for 16 hours at room temperature, then volatiles were evaporated under reduced pressure. Residues were dissolved in dry diethylether and volatiles were evaporated under reduced pressure (repeated three times), then the residue was dried under high vacuum. Title compound was obtained as a hygroscopic, colorless solid (522 mg, 1.97 mmol, 98% yield).

R_f = 0.36 (toluene:ethyl acetate:acetic acid= 7:2:1). LRMS (EI, 70 eV): m/z (%): 57(100), 55(20), 56(20), 87(18), 142(13), 160(9), 55(5), 58(5), 59(4), 115(4). ¹H NMR (250 MHz, Acetonitrile-d₃) δ 7.32 (bs, 2H), 4.34 – 4.18 (m, 1H), 3.70 (dd, J = 16.6, 8.7 Hz, 1H), 3.70 (s, 3H). ¹⁹F NMR (235 MHz, Acetonitrile-d₃) δ -79.28. ¹³C NMR (63 MHz, Acetonitrile-d₃) δ 172.1, 121.5 (q, J = 318.7 Hz), 53.3, 50.0, 35.4. IR (ATR, cm^{−1}) 3238, 3085, 3046, 2969, 2895, 1736, 1700, 1441, 1384, 1365, 1320, 1265, 1242, 1226, 1207, 1158, 1080, 1065, 1029, 922, 878, 852, 838, 773, 753, 734, 637, 573, 513.

General procedure for the synthesis of piperidine derivatives

A 40 mL vial was charged with stirring bar, appropriate alcohol (10.0 mmol), imidazole (1.02 g, 15.0 mmol), dimethylformamide (77 µL, 1 mmol, 10 mol%) and dichloromethane (20 mL). To the
stirred reaction mixture, tert-butyldimethylsilyl chloride (1.71 g, 11 mmol, 1.1 equiv) was added at room temperature and stirring was continued for 16 hours. Reaction mixture was diluted with diethylether (120 mL) and washed with water (3 × 50 mL) and brine (1 × 20 mL). Organic phase was separated, dried over anh. MgSO₄, filtered and the filtrate was concentrated in vacuo.

3-((tert-butyldimethylsilyl)oxy)piperidine (A20)

Compound A20 was prepared according to general procedure from piperidine-3-ol (1.01 g, 10 mmol) to afford a pale yellow oil (1.99 g, 9.26 mmol, 93% yield).

Rf = 0.52 (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 158(100), 84(44), 82(32), 75(26), 73(21), 159(14), 59(12), 56(11), 57(9), 55(9), 156(8), 101(7), 58(4), 200(3). ¹H NMR (250 MHz, CDCl₃) δ 3.52 (dt, J = 7.3, 3.7 Hz, 1H), 2.83 (d, J = 12.2 Hz, 1H), 2.75 – 2.62 (m, 1H), 2.60 – 2.34 (m, 2H), 2.20 (bs, 1H), 1.81 – 1.54 (m, 2H), 1.33 (tt, J = 12.0, 7.5 Hz, 2H), 0.88 – 0.68 (m, 9H), 0.01 – 0.13 (m, 6H). ¹³C NMR (63 MHz, CDCl₃) δ 67.9, 54.0, 46.1, 33.8, 25.8, 24.4, 18.1, -4.7, -4.8. IR (ATR, cm⁻¹) 2929, 2911, 2894, 2856, 2809, 1738, 1472, 1462, 1439, 1363, 1251, 1229, 1217, 1149, 1093, 1066, 1046, 1029, 1005, 879, 851, 832, 804, 771, 668.

3-((tert-butyldimethylsilyl)oxy)methyl)piperidine (A21)

Compound A21 was prepared according to general procedure from piperidin-3-ylmethanol (1.15 g, 10 mmol) to afford a pale yellow oil (1.47 g, 6.4 mmol, 64% yield).

Rf = 0.23 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 172(100), 96(36), 75(26), 89(24), 73(22), 82(22), 59(21), 98(19), 173(19), 84(15), 70(12), 57(8), 214(6), 229(3). ¹H NMR (250 MHz, CDCl₃) δ 3.47 – 3.21 (m, 2H), 3.06 (d, J = 11.5 Hz, 1H), 2.93 (d, J = 12.1 Hz, 1H), 2.46 (td, J = 11.8, 2.7 Hz, 1H), 2.34 – 2.13 (m, 1H), 1.91 (s, 1H), 1.76 – 1.48 (m, 3H), 1.48 – 1.24 (m, 1H), 1.01 (qd, J = 11.9, 3.9 Hz, 1H), 0.82 (s, 9H), -0.03 (d, J = 3.7 Hz, 6H). ¹³C NMR (63 MHz, CDCl₃) δ 66.6, 50.2, 47.2, 40.0, 27.8, 26.3, 26.0, 18.3, -5.4, -5.4. IR (ATR, cm⁻¹) 2928, 2854, 2802, 2734, 1738, 1470, 1442, 1385, 1361, 1252, 1217, 1078, 1005, 939, 832, 773, 665, 567.
Synthesis of compound 6
1-(naphthalen-1-ylmethyl)-2-(trifluoromethyl)aziridine

To a stirred suspension of sodium carbonate (63.6 mg, 0.60 mmol), 1-naphthylmethylamine (64.2 mg, 0.4 mmol) and dichloromethane (4 ml) 4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate (196 mg, 0.42 mmol) was added in one portion. Reaction was monitored by TLC and after completion the mixture was concentrated onto Celite and purified by flash chromatography (eluent: hexanes:ethyl acetate= 10:1). Title compound was obtained as a colorless syrup (91.6 mg, 0.365 mmol, 91% yield).

Rf = 0.33 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 141(100), 115(27), 251(17), 142(14), 139(10), 127(6), 128(5), 154(3), 126(3), 63(3), 140(3), 60(3), 252(3), 116(3). ¹H NMR 1H NMR (250 MHz, Acetonitrile-d₃) δ 8.29 – 8.07 (m, 1H), 8.03 – 7.76 (m, 2H), 7.67 – 7.32 (m, 4H), 3.97 (s, 2H), 2.49 (pd, J = 5.6, 3.0 Hz, 1H), 2.12 (d, J = 3.1 Hz, 1H), 1.87 (d, J = 6.4 Hz, 1H). ¹⁹F NMR (235 MHz, Acetonitrile-d₃) δ -71.67. ¹³C NMR (63 MHz, Acetonitrile-d₃) δ 135.1, 134.6, 132.5, 129.4, 129.0, 127.0, 126.8, 126.4, 125.7 (d, J = 271.3 Hz), 125.0, 37.9 (q, J = 39.0 Hz), 30.8 (q, J = 1.9 Hz). IR (ATR, cm⁻¹) 3041, 2988, 2971, 2901, 1738, 1598, 1510, 1475, 1429, 1283, 1232, 1131, 1072, 1058, 1028, 957, 865, 835, 793, 771, 734, 655, 537, 408.
Optimization of reaction conditions of homodiamination
A 4 mL screwed cap vial was charged with stirring bar, sodium carbonate (0-3.0 equiv), solvent (2 mL) and \(N \)-methyl-1-(naphthalen-1-yl)methanamine (1.0-3.0 equiv). To the vigorously stirred mixture, (4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate (93.2 mg, 0.20 mmol) was added portionwise within one minute. Reaction mixture was stirred for the indicated time, diluted with the corresponding solvent and concentrated onto Celite under reduced pressure. Residue was purified by flash column chromatography.

Supplementary Table 1: Optimization of reaction conditions of homodiamination

<table>
<thead>
<tr>
<th>#</th>
<th>MeNHR [equiv]</th>
<th>Na(_2)CO(_3) [equiv]</th>
<th>Solvent</th>
<th>Isolated yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>0</td>
<td>CH(_2)Cl(_2)</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>0</td>
<td>CH(_2)Cl(_2)</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>0</td>
<td>CH(_2)Cl(_2)</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>1.5</td>
<td>MeCN</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>2.0</td>
<td>MeCN</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>2.0</td>
<td>CH(_2)Cl(_2)</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>3.0</td>
<td>2.0</td>
<td>CH(_2)Cl(_2)</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>2.0</td>
<td>PhMe</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
<td>2.0</td>
<td>MeCN</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>3.0</td>
<td>MeCN</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>2.5</td>
<td>3.0</td>
<td>MeCN</td>
<td>92</td>
</tr>
</tbody>
</table>
Reaction monitoring by 19F-NMR

A 5 mm O.D. NMR tube was charged with (4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate (23.3 mg, 0.05 mmol) acetonitrile-d_3 (500 µL) and sealed with a hollow cap. An LDPE tube was filled with five layers of substances in a following sequence: acetonitrile (100 µL), air (100 µL), appropriate secondary amine (0.20 mmol, 4 equiv), air (100 µL) and acetonitrile (100 µL), then was placed in the NMR tube. These substances were added in one portion to the reaction mixture at $t=0$ second. Recording of 19F-NMR spectra (proton decoupled, No. dummy scan = 0, No. scan = 1) was started at $t=-60$ seconds and 15 seconds time intervals were applied between experiments.

Supplementary Figure 1: Reaction scheme and monitoring of homodiamination reaction with of N-methyl-1-(naphthalen-1-yl)methanamine
Supplementary Figure 2: Reaction monitoring of homodiamination reaction with N-methylaniline by 19F-NMR-spectroscopy
Supplementary Figure 3: Reaction monitoring of homodiamination reaction with N-ethylaniline by 19F-NMR-spectroscopy
Supplementary Figure 4: GC-MS TIC of homodiamination reaction with N-ethylaniline
Supplementary Figure 5: Reaction monitoring of homodiamination reaction with indoline by 19F-NMR-spectroscopy
General procedure for the synthesis of homofunctionalized diamines

Vial was charged with stirring bar, appropriate amine (2.5 equiv) and acetonitrile (1 mL / 0.1 mmol). To the vigorously stirred mixture, sodium carbonate (1.5 equiv) was added, then (4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate (1) (1 equiv) was added portionwise. Reaction mixture was stirred for 3 hours, diluted with dichloromethane and concentrated onto Celite under reduced pressure. Residue was purified by flash column chromatography (hexanes:ethyl acetate = 100:0 → 50:50).

Synthesis of compound 7
3,3,3-trifluoro-N¹,N²-dimethyl-N¹,N²-diphenylpropane-1,2-diamine

Compound 7 was prepared according to general procedure from N-methylaniline (54 µL, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (92.3 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (47.1 mg, 0.153 mmol, 76%). R_f = 0.53 (hexanes:ethyl acetate= 10:1).

LRMS (EI, 70 eV): m/z (%): 308(5), 188(3), 132(2), 121(9), 120(100), 119(2), 118(3), 105(6), 104(9), 91(4), 79(2), 78(2), 77(14), 51(3).

¹H NMR (250 MHz, CDCl₃) δ 7.2 (t, J = 8.6, 7.5 Hz, 2H), 7.1 (t, J = 8.6, 7.4 Hz, 2H), 6.8 – 6.6 (m, 6H), 4.5 (pd, J = 8.4, 4.0 Hz, 1H), 3.9 (dd, J = 15.4, 4.0 Hz, 1H), 3.7 (dd, J = 15.4, 8.5 Hz, 1H), 2.9 (s, 6H).

¹⁹F NMR (235 MHz, CDCl₃) δ -70.01.

¹³C NMR (63 MHz, CDCl₃) δ 149.9, 148.2, 129.7, 129.3, 126.0 (q, J = 288.8 Hz), 119.0, 117.5, 114.5, 112.6, 59.2 (q, J = 26.3 Hz), 49.4 (d, J = 0.9 Hz), 39.5, 32.3 (d, J = 1.6 Hz).

IR (ATR, cm⁻¹) 3095, 3063, 3029, 2910, 2827, 1598, 1503, 1451, 1363, 1314, 1272, 1239, 1207, 1166, 1141, 1117, 1095, 1034, 1000, 963, 895, 858, 746, 691, 516.

HRMS m/z [M+H]⁺ calculated for C₁₇H₂₀N₂F₃: 309.1579, found: 309.1579.

Synthesis of compound 8
N¹,N²-diethyl-3,3,3-trifluoro-N¹,N²-diphenylpropane-1,2-diamine

Compound 8 was prepared according to general procedure from N-ethylaniline (96 µL, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a pale yellow oil (13.3 mg, 0.0395 mmol, 13% yield). R_f = 0.55 (hexanes:ethyl acetate= 10:1).

LRMS (EI, 70 eV): m/z (%): 336(1), 214(1), 202(1), 174(1), 135(10), 134(100), 132(1), 118(1), 107(1), 106(9), 106(6), 105(2), 105(1), 104(7), 91(3), 79(3), 78(1), 77(11), 65(1), 51(2).

¹H NMR (250 MHz, CDCl₃) δ 7.22 – 7.02 (m, 4H), 6.78 – 6.54 (m, 6H), 4.36 (td, J = 7.9, 4.6 Hz, 1H), 3.77 – 3.53 (m, 2H), 3.42 – 3.16 (m, 4H), 1.08 (t, J = 6.9 Hz, 3H), 1.01 (t, J = 6.9 Hz, 3H).
(t, J = 7.1 Hz, 3H). 19F NMR (235 MHz, Chloroform- d) δ -69.86. 13C NMR (63 MHz, Chloroform- d) δ 147.9, 129.7, 129.2, 126.4 (q, J = 288.3 Hz), 119.4, 117.7, 116.6, 113.6, 60.6 (q, J = 25.5 Hz), 48.6, 46.5, 39.1, 13.1, 12.1. IR (ATR, cm-1) 3094, 3063, 3026, 2973, 2929, 2873, 1598, 1502, 1449, 1353, 1299, 1262, 1232, 1188, 1161, 1141, 1103, 1055, 1038, 973, 913, 888, 851, 795, 744, 692, 615, 579, 522, 468, 413. HRMS m/z [M+H]+ calculated for C19H24N2F3+: 337.1892, found: 337.1893.

Synthesis of compound 9

1,1’-(3,3,3-trifluoropropane-1,2-diyldiindoline

Compound 9 was prepared according to general procedure from indoline (57 µL, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a brown oil (62.1 mg, 0.187 mmol, 93% yield). Rf = 0.55 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 332(17), 200(8), 133(15), 133(8), 132(100), 132(49), 131(8), 130(20), 130(9), 118(6), 117(18), 117(10), 103(6), 91(7), 91(18), 117(10), 116(6), 115(7), 115(7), 115(10), 114(6), 113(8), 113(20), 113(10), 112(8), 111(7), 110(6), 91(7), 90(8), 77(10), 77(5). 1H NMR (250 MHz, Methanol- d4) δ 7.15 – 6.92 (m, 4H), 6.74 – 6.41 (m, 4H), 4.57 (ddt, J = 16.7, 8.5, 4.2 Hz, 1H), 3.78 (dd, J = 14.0, 9.5 Hz, 2H), 3.61 (q, J = 8.7 Hz, 1H), 3.48 – 3.32 (m, 2H), 3.26 (q, J = 8.9 Hz, 1H), 2.95 (t, J = 8.7 Hz, 2H), 2.89 – 2.65 (m, 2H). 19F NMR (235 MHz, Methanol- d4) δ -72.00. 13C NMR (63 MHz, Methanol- d4) δ 152.8, 151.7, 131.0, 129.8, 128.3, 128.2, 127.5 (q, J = 287.1 Hz), 125.6, 125.5, 119.2, 118.9, 107.5, 106.9, 56.6 (q, J = 27.0 Hz), 54.5, 48.1, 46.3 (q, J = 19 Hz), 29.3, 29.1. IR (ATR, cm-1) 3048, 3029, 2952, 2873, 1598, 1502, 1449, 1475, 1460, 1263, 1242, 1192, 1157, 1146, 1120, 1090, 1054, 1025, 991, 868, 739, 713, 700, 630, 577, 417. HRMS m/z [M+H]+ calculated for C19H20N2F3+: 333.1579, found: 333.1579.

Synthesis of compound 10

1,1’-(3,3,3-trifluoropropane-1,2-diyldi)bis(1,2,3,4-tetrahydroquinoline)

Compound 10 was prepared according to general procedure from 1,2,3,4-tetrahydroquinoline (64 µL, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a brown oil (36.1 mg, 0.10 mmol, 50% yield). Rf = 0.55 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 360(3), 147(11), 146(100), 144(4), 131(7), 130(11), 118(8), 117(9), 115(3), 91(11), 77(3). 1H NMR (250 MHz, Chloroform- d) δ 7.14 (t, J = 7.8 Hz, 1H), 7.07 – 6.90 (m, 3H), 6.76 – 6.57 (m, 3H), 6.52 (d, J = 8.3 Hz, 1H), 4.76 (tt, J = 12.9, 6.3 Hz, 1H), 3.88 (dd, J = 15.3, 4.4 Hz, 1H), 3.71 (dd, J = 15.3, 7.6 Hz,
1H), 3.39 (dt, $J = 16.3$, 5.5 Hz, 4H), 2.84 (h, $J = 9.8$ Hz, 2H), 2.72 (t, $J = 6.4$ Hz, 2H), 2.14 – 1.74 (m, 4H). 19F NMR (235 MHz, Chloroform-d) δ -69.3. 13C NMR (63 MHz, Chloroform-d) δ 144.8, 144.2, 129.9, 129.6, 127.5, 127.2, 124.8 (q, $J = 289.1$ Hz), 123.7, 123.2, 117.7, 116.6, 112.0, 110.0, 56.3 (q, $J = 25.2$ Hz), 50.8, 48.3, 43.6, 28.2, 28.1, 22.2, 22.1. IR (ATR, cm$^{-1}$) 3067, 3022, 2932, 2890, 2846, 1713, 1602, 1575, 1496, 1458, 1348, 1302, 1275, 1235, 1218, 1188, 1157, 1129, 1107, 1061, 742, 689, 529. HRMS m/z [M+H]$^+$ calculated for C$_{21}$H$_{24}$N$_2$F$_3$: 361.1892, found: 361.1906.

Synthesis of compound 11
3,3,3-trifluoro-N^1,N^2-bis(2-methoxyphenyl)-N^1,N^2-dimethylpropane-1,2-diamine

Compound 11 was prepared according to general procedure from 2-methoxy-N-methylaniline (70.7 mg, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a brown oil (32.2 mg, 0.087 mmol, 44% yield). R_f = 0.28 (hexanes:ethyl acetate= 10:1).

LRMS (EI, 70 eV): m/z (%): 368 (1), 218 (1), 151 (10), 150 (100), 148 (1), 136 (2), 135 (20), 134 (28), 121 (2), 120 (5), 107 (1), 106 (1), 104 (1), 93 (2), 92 (2), 91 (2), 79 (2), 78 (2), 77 (5), 65 (3), 51 (1). 1H NMR (250 MHz, Chloroform-d) δ 7.04 – 6.72 (m, 8H), 4.60 (h, $J = 8.5$ Hz, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.66 (s, 1H), 3.63 (s, 1H), 2.87 (s, 6H).

19F NMR (235 MHz, Chloroform-d) δ -68.26.

13C NMR (63 MHz, Chloroform-d) δ 152.7, 151.5, 140.5, 129.3 (q, $J = 290.6$ Hz), 122.5, 122.1, 121.1, 121.0, 120.4, 111.8, 111.7, 60.1 (q, $J = 25.3$ Hz), 55.4 (d, $J = 2.4$ Hz), 51.1, 41.1, 34.0 (d, $J = 1.1$ Hz). IR (ATR, cm$^{-1}$) 3063, 2997, 2956, 2904, 2836, 1594, 1500, 1456, 1438, 1235, 1160, 1110, 1090, 1055, 1027, 991, 961, 855, 733, 689, 591, 530, 488, 451. HRMS m/z [M+H]$^+$ calculated for C$_{19}$H$_{24}$N$_2$O$_2$F$_3$: 369.179, found: 369.1789.

Synthesis of compound 12
3,3,3-trifluoro-N^1,N^2-dimethyl-N^1,N^2-di-m-tolylpropane-1,2-diamine

Compound 12 was prepared according to general procedure from N-methyl-3-toluidine (77.3 mg, 0.625 mmol, 2.5 equiv), sodium carbonate (39.7 mg, 0.375 mmol, 1.5 equiv) and 1 (117 mg, 0.25 mmol, 1 equiv) to afford a colorless oil (54.6 mg, 0.162 mmol, 65% yield). R_f = 0.65 (hexanes:ethyl acetate= 10:1).

LRMS (EI, 70 eV): m/z (%): 337 (2), 336 (11), 202 (3), 146 (2), 135 (17), 134 (100), 133 (3), 132 (2), 120 (2), 119 (11), 118 (12), 105 (3), 92 (3), 91 (19), 90 (2), 89 (2), 77 (3), 65 (6). 1H NMR (250 MHz, Chloroform-d) δ 7.14 – 7.01 (m, 1H), 6.96 (t, $J = 7.8$ Hz, 1H), 6.56 – 6.49 (m, 2H), 6.47 – 6.36 (m, 3H), 6.31 – 6.27 (m, 1H), 4.47 (pd, $J = 8.4$, 4.1 Hz, 1H), 3.82 (dd, $J = 15.4$, 4.1 Hz, 1H), 3.59 (dd, $J = 15.4$, 4.1 Hz, 1H), 3.50 – 3.40 (m, 5H).
8.4 Hz, 1H), 2.83 (s, 6H), 2.20 (s, 3H), 2.10 (s, 3H). 19F NMR (235 MHz, Chloroform-\textit{d}) \(\delta\) -69.99.

13C NMR (63 MHz, Chloroform-\textit{d}) \(\delta\) 150.0, 148.1, 139.4, 139.0, 129.5, 129.1, 126.0 (q, \(J = 288.8\) Hz), 119.9, 118.4, 115.4, 113.5, 111.6, 109.9, 58.9 (q, \(J = 26.2\) Hz), 49.4, 39.8, 32.3 (q, \(J = 1.6\) Hz), 22.0, 21.8. IR (ATR, cm\(^{-1}\)) 3046, 2945, 2918, 2826, 1602, 1582, 1496, 1449, 1360, 1302, 1273, 1245, 1181, 1163, 1139, 1119, 1099, 1046, 1017, 995, 968, 909, 839, 766, 757, 732, 691, 576, 478, 441. HRMS m/z [M+H]\(^+\) calculated for \(C_{19}H_{24}N_2F_3\): 337.1892, found: 337.1897.

Synthesis of compound 13

3,3,3-trifluoro- \(N^1\),\(N^2\)-bis(3-fluorophenyl)- \(N^1\),\(N^2\)-dimethylpropane-1,2-diamine

Compound 13 was prepared according to general procedure from 3-fluoro-\(N\)-methylaniline (58 \(\mu\)L, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (30.2 mg, 0.088 mmol, 44% yield). \textit{Rf} = 0.56 (hexanes:ethyl acetate= 10:1).

LRMS (EI, 70 eV): m/z (%): 344(2), 206(3), 150(2), 139(9), 138(100), 136(3), 123(5), 122(10), 110(2), 109(5), 96(3), 95(11), 75(3). 1H NMR (250 MHz, Chloroform-\textit{d}) \(\delta\) 7.21 (dd, \(J = 8.2, 7.1\) Hz, 1H), 7.09 (dd, \(J = 8.2, 7.6\) Hz, 1H), 6.56 – 6.27 (m, 6H), 4.51 (pd, \(J = 8.3, 4.0\) Hz, 1H), 3.90 (dd, \(J = 15.5, 3.9\) Hz, 1H), 3.71 (dd, \(J = 15.5, 8.6\) Hz, 1H), 2.93 (s, 3H), 2.92 (s, 3H). 19F NMR (235 MHz, Chloroform-\textit{d}) \(\delta\) -70.20 (s, 3F), -111.62 (s, 1F), -111.91 (s, 1F). 13C NMR (63 MHz, Chloroform-\textit{d}) \(\delta\) 164.5 (d, \(J = 243.1\) Hz), 164.0 (d, \(J = 243.6\) Hz), 151.5 (d, \(J = 10.2\) Hz), 149.8 (d, \(J = 10.5\) Hz), 130.8 (d, \(J = 10.3\) Hz), 130.4 (d, \(J = 10.1\) Hz), 125.7 (q, \(J = 288.2\) Hz), 109.8 (d, \(J = 2.5\) Hz), 107.9 (d, \(J = 2.4\) Hz), 105.7 (d, \(J = 21.4\) Hz), 104.1 (d, \(J = 21.6\) Hz), 101.6 (d, \(J = 26.0\) Hz), 99.7 (d, \(J = 26.2\) Hz), 58.9 (q, \(J = 26.9\) Hz), 49.2, 39.6, 32.5 (q, \(J = 1.7\) Hz). IR (ATR, cm\(^{-1}\)) 3078, 3043, 2917, 2830, 1616, 1580, 1497, 1452, 1297, 1272, 1234, 1157, 1130, 1117, 1097, 1076, 1048, 1014, 1004, 978, 903, 822, 754, 681, 496, 451. HRMS m/z [M+H]\(^+\) calculated for \(C_{17}H_{18}N_2F_3\): 345.139, found: 345.1396.
Synthesis of compound 14

N^1,N^2-bis(3-chlorophenyl)-3,3,3-trifluoro- N^1,N^2-dimethylpropane-1,2-diamine

Compound 14 was prepared according to general procedure from 3-chloro-N-methylaniline (63 µL, 0.50 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.30 mmol, 1.5 equiv) and 1 (93.2 mg, 0.20 mmol, 1 equiv) to afford a pale yellow oil (29.7 mg, 0.079 mmol, 39% yield). R_f = 0.50 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 376(1), 222(2), 157(3), 156(32), 155(9), 154(100), 141(2), 140(3), 139(4), 138(7), 125(2), 119(4), 118(6), 111(4), 91(2), 77(3), 76(2), 75(4). 1H NMR (250 MHz, Chloroform-d) δ 7.18 (t, J = 8.1 Hz, 1H), 7.07 (t, J = 8.1 Hz, 1H), 6.77 – 6.52 (m, 3H), 6.48 (dd, J = 8.4, 2.6 Hz, 1H), 4.47 (qd, J = 8.3, 4.0 Hz, 1H), 3.88 (dd, J = 15.5, 4.0 Hz, 1H), 3.71 (dd, J = 15.5, 8.6 Hz, 1H), 2.91 (s, 6H). 19F NMR (235 MHz, Chloroform-d) δ -70.13. 13C NMR (63 MHz, Chloroform-d) δ 150.8, 148.9, 135.7, 135.3, 130.7, 130.3, 125.6 (q, J = 288.2 Hz), 119.2, 117.9, 114.5, 112.9, 112.5, 110.8, 58.8 (q, J = 26.9 Hz), 49.4, 39.8, 32.5. IR (ATR, cm$^{-1}$) 3077, 2951, 2912, 2829, 1592, 1563, 1489, 1435, 1364, 1293, 1270, 1239, 1212, 1167, 1147, 1097, 1046, 1002, 987, 971, 913, 832, 814, 759, 716, 681, 571, 491, 441, 410. HRMS m/z [M+H]$^+$ calculated for C$_{17}$H$_{18}$N$_2$F$_3$Cl$_2$+: 377.0799, found: 377.0804.

Synthesis of compound 15

3,3,3-trifluoro- N^1,N^2-dimethyl- N^1,N^2-di-p-tolylpropane-1,2-diamine

Compound 15 was prepared according to general procedure from N-methyl-4-toluidine (75.7 mg, 0.625 mmol, 2.5 equiv), sodium carbonate (39.7 mg, 0.375 mmol, 1.5 equiv) and 1 (117 mg, 0.25 mmol, 1 equiv) to afford a colorless oil (51.2 mg, 0.152 mmol, 61% yield). R_f = 0.55 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 336(3), 202(2), 135(10), 134(100), 119(7), 118(8), 105(2), 91(10), 77(2), 65(3). 1H NMR (250 MHz, Chloroform-d) δ 7.13 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.5 Hz, 2H), 6.69 (d, J = 8.5 Hz, 2H), 6.62 (d, J = 8.6 Hz, 2H), 4.54 (pd, J = 8.4, 4.0 Hz, 1H), 3.91 (dd, J = 15.3, 8.6 Hz, 1H), 3.72 (dd, J = 15.3, 8.6 Hz, 1H), 3.04 – 2.86 (m, 6H), 2.34 (s, 3H), 2.28 (s, 3H). 19F NMR (235 MHz, Chloroform-d) δ -69.96. 13C NMR (63 MHz, Chloroform-d) δ 147.8, 146.1, 130.2, 129.8, 128.2, 126.7, 126.1 (q, J = 289.4 Hz), 114.8, 112.9, 59.5 (q, J = 25.9 Hz), 49.6, 39.7, 32.3 (q, J = 1.4 Hz), 20.4. IR (ATR, cm$^{-1}$) 3012, 2951, 2866, 2824, 1618, 1517, 1363, 1310, 1270, 1238, 1205,
1164, 1140, 1116, 1095, 1046, 998, 964, 909, 800, 732, 678, 518. **HRMS** m/z [M+H]^+ calculated for C_{19}H_{24}N_{2}F_{3}^+: 337.1892, found: 337.1889.

Synthesis of compound 16
\[\text{N}^1,\text{N}^2\text{-bis(4-chlorophenyl)-3,3,3-trifluoro- N}^1,\text{N}^2\text{-dimethylpropane-1,2-diamine} \]

Compound 16 was prepared according to general procedure from 4-chloro-N-methylaniline (94 µL, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a pale yellow oil (56.4 mg, 0.15 mmol, 50% yield). **Rf** = 0.53 (hexanes:ethyl acetate= 10:1). **LRMS** (EI, 70 eV): m/z (%): 378(2), 376(2), 222(2), 157(3), 156(32), 155(9), 154(100), 141(2), 140(2), 140(2), 139(6), 138(9), 125(2), 119(5), 118(5), 113(2), 111(6), 77(2), 75(2). **1H NMR** (250 MHz, Chloroform-d) δ 7.27 – 7.17 (m, 2H), 7.17 – 7.07 (m, 2H), 6.61 (d, \(J = 9.1 \) Hz, 2H), 6.55 (d, \(J = 9.1 \) Hz, 2H), 4.44 (ddq, \(J = 12.1, 8.3, 4.2 \) Hz, 1H), 3.88 (dd, \(J = 15.5, 3.8 \) Hz, 1H), 3.70 (dd, \(J = 15.5, 8.7 \) Hz, 1H), 2.91 (s, 6H). **19F NMR** (235 MHz, Chloroform-d) δ -70.13. **13C NMR** (63 MHz, Chloroform-d) δ 148.4, 146.6, 129.5, 129.2, 125.7 (q, \(J = 288.4 \) Hz), 124.1, 122.7, 115.6, 113.8, 59.1 (q, \(J = 26.6 \) Hz), 49.3, 39.7, 32.4 (q, \(J = 1.4 \) Hz). **IR** (ATR, cm\(^{-1}\)) 3078, 3047, 2990, 2945, 2904, 2829, 1597, 1496, 1364, 1309, 1269, 1238, 1207, 1166, 1141, 1117, 1095, 1046, 997, 964, 807, 763, 710, 621, 510, 411. **HRMS** m/z [M+H]^+ calculated for C_{17}H_{18}N_{2}F_{3}Cl_{2}^+: 377.0799, found: 377.0797.

Synthesis of compound 17
\[\text{N}^1,\text{N}^2\text{-bis(4-bromophenyl)-3,3,3-trifluoro- N}^1,\text{N}^2\text{-dimethylpropane-1,2-diamine} \]

Compound 17 was prepared according to general procedure from 3-bromo-N-methylaniline (95.9 mg, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (53.7 mg, 0.115 mmol, 58% yield). **Rf** = 0.43 (hexanes:ethyl acetate= 10:1). **LRMS** (EI, 70 eV): m/z (%): 468(1), 466(2), 464(1), 201(9), 200(96), 199(10), 198(100), 185(6), 184(9), 183(6), 182(8), 157(6), 155(6), 119(14), 118(16), 105(3), 104(5), 91(3), 77(4), 76(5). **1H NMR** (250 MHz, Chloroform-d) δ \(J = 8.8 \) Hz, 2H), 7.16 (d, \(J = 8.7 \) Hz, 2H), 6.46 (d, \(J = 8.9 \) Hz, 2H), 6.40 (d, \(J = 8.9 \) Hz, 2H), 4.34 (td, \(J = 8.2, 3.7 \) Hz, 1H), 3.78 (dd, \(J = 15.4, 3.7 \) Hz, 1H), 3.60 (dd, \(J = 15.5, 8.7 \) Hz, 1H), 2.80 (s, 6H). **19F NMR** (235 MHz, Chloroform-d) δ \(J = 289.3 \) Hz, 2H), 7.16 (d, \(J = 8.7 \) Hz, 2H), 6.46 (d, \(J = 8.9 \) Hz, 2H), 6.40 (d, \(J = 8.9 \) Hz, 2H), 4.34 (td, \(J = 8.2, 3.7 \) Hz, 1H), 3.78 (dd, \(J = 15.4, 3.7 \) Hz, 1H), 3.60 (dd, \(J = 15.5, 8.7 \) Hz, 1H), 2.80 (s, 6H). **13C NMR** (63 MHz, Chloroform-d) δ 148.8, 146.8, 132.4, 132.1, 123.3 (q, \(J = 289.3 \) Hz, 2H), 116.0, 114.2, 111.4, 109.9, 58.9 (q, \(J = 26.7 \) Hz), 49.3, 39.7, 32.4.
IR (ATR, cm⁻¹) 3078, 3044, 2989, 2946, 2829, 2989, 2946, 2902, 2829, 1866, 1741, 1589, 1493, 1373, 1312, 1269, 1238, 1205, 1167, 1141, 1117, 1096, 1046, 994, 963, 906, 861, 804, 756, 730, 705, 688, 648, 638, 628, 596, 566, 540, 510, 481, 461.

Synthesis of compound 18

3,3,3-trifluoro-N¹,N²-bis(4-methoxyphenyl)-N¹,N²-dimethylpropane-1,2-diamine

Compound 18 was prepared according to general procedure from 4-methoxy-N-methylaniline (70 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.45 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (57.5 mg, 0.166 mmol, 78% yield). Rf = 0.60 (hexanes:ethyl acetate = 7:3). LRMS (EI, 70 eV): m/z (%): 368(8), 218(3), 151(14), 150(100), 136(3), 135(13), 134(5), 121(3), 120(9), 92(3), 77(3). ¹H NMR (250 MHz, Chloroform-d) δ 6.89 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 9.1 Hz, 2H), 6.73 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.9 Hz, 2H), 4.39 (td, J = 8.2, 3.7 Hz, 1H), 3.80 (s, 3H), 3.78–3.60 (m, 5H), 2.91 (bs, 6H). ¹³C NMR (63 MHz, Chloroform-d) δ 153.1, 152.5, 144.5, 142.9, 126.2 (q, J = 289.4 Hz), 116.6, 115.2, 114.9, 114.6, 60.5 (q, J = 25.7 Hz), 55.8, 55.7, 50.2, 40.2, 32.6 (q, J = 1.1 Hz). IR (ATR, cm⁻¹) 3078, 3044, 2989, 2946, 2829, 1866, 1741, 1589, 1493, 1373, 1312, 1269, 1238, 1205, 1167, 1141, 1117, 1096, 1046, 994, 963, 906, 861, 804, 756, 730, 705, 688, 648, 638, 628, 596, 566, 540, 510, 481, 461. HRMS m/z [M+H]⁺ calculated for C₁₉H₂₄N₂O₂F₃⁺: 369.1790, found: 369.1790.

Synthesis of compound 19

3,3,3-trifluoro-N¹,N²-dimethyl-N¹,N²-bis(naphthalen-1-ylmethyl)propane-1,2-diamine

Compound 19 was prepared according to general procedure from N-methyl-1-(naphthalen-1-yl)methanamine (85.6 mg, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a colorless oil (78.8 mg, 0.180 mmol, 90% yield). Rf = 0.55 (hexanes:ethyl acetate = 10:1). LRMS (EI, 70 eV): m/z (%): 185(7), 184(51), 182(1), 170(1), 168(1), 167(1), 143(1), 142(13), 141(100), 139(3), 127(1), 116(1), 115(14), 89(1). ¹H NMR (250 MHz, Chloroform-d) δ 8.04–7.88 (m, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.54–7.29 (m, 4H), 7.18–6.85 (m, 8H), 3.81 (s, 2H), 3.64 (d, J = 13.0 Hz, 1H), 3.41 (d, J = 12.9 Hz, 1H), 3.20–2.98 (m, 1H), 2.76–2.55 (m, 1H), 2.25 (dd, J = 13.6, 3.1 Hz, 1H), 1.85 (s, 3H), 1.79 (s, 3H). ¹⁹F NMR (235 MHz, Chloroform-d) δ -67.95. ¹³C NMR (63 MHz,
Chloroform-\(d\) \(\delta\) 134.5, 134.0, 134.0, 132.6, 132.4, 128.5, 128.4, 128.2, 128.1, 127.6, 127.4 (\(q, J = 290.4\) Hz), 127.2, 125.8, 125.8, 125.7, 125.3, 125.2, 125.1, 124.7, 61.7 (\(q, J = 24.3\) Hz), 61.5, 58.0, 53.6, 42.5, 36.5. \textbf{IR (ATR, cm}^{-1}) 3047, 2946, 2849, 2807, 1597, 1509, 1462, 1367, 1310, 1253, 1158, 1100, 1051, 1008, 907, 790, 773, 730, 703, 649, 520, 454, 414. \textbf{HRMS} \(m/z\) [M+H]+ calculated for C_{27}H_{28}N_{2}F_{3}+: 437.2205, found: 437.2198.

\textit{Synthesis of compound 20}

3,3,3-trifluoro-\(N^{1},N^{1},N^{2},N^{2}\)-tetraisobutylpropane-1,2-diamine

Compound 20 was prepared according to general procedure from diisobutylamine (130 \(\mu\)L, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a pale yellow oil (70.8 mg, 0.201 mmol, 67% yield). \(R_f = 0.75\) (hexanes:ethyl acetate= 10:1). \textbf{LRMS} (EI, 70 eV): \(m/z\) (%): 309(1), 209(2), 190(2), 143(11), 142(100), 140(2), 126(1), 124(1), 100(4), 98(2), 86(7), 84(2), 57(10), 56(1), 55(1). \textbf{\(^1\)H NMR} (250 MHz, Chloroform-\(d\)) \(\delta\) 3.16 (\(qt, J = 8.9, 5.2\) Hz, 1H), 2.74 – 2.48 (m, 2H), 2.46 – 2.21 (m, 4H), 2.06 (\(h, J = 7.9, 6.9\) Hz, 4H), 1.69 (\(tp, J = 13.3, 6.6\) Hz, 4H), 1.06 – 0.68 (m, 24H). \textbf{\(^1\)F NMR} (235 MHz, Chloroform-\(d\)) \(\delta\) -68.12. \textbf{\(^{13}\)C NMR} (63 MHz, Chloroform-\(d\)) \(\delta\) 127.7 (\(q, J = 289.1\) Hz), 64.6, 60.8, 60.8 (\(q, J = 23.8\) Hz), 53.9, 27.3, 26.5, 21.2, 21.1, 20.8, 20.7. \textbf{IR (ATR, cm}^{-1}) 2953, 2907, 2870, 2824, 2805, 2749, 2722, 1469, 1388, 1365, 1278, 1248, 1170, 1153, 1117, 1082, 1035, 990, 959, 927, 849, 824, 710, 620, 598, 484. \textbf{HRMS} \(m/z\) [M+H]+ calculated for C_{17}H_{40}N_{2}F_{3}+: 353.3144, found: 353.3148.

\textit{Synthesis of compound 21}

\(N^{1},N^{1},N^{2},N^{2}\)-tetrabenzyl-3,3,3-trifluoropropane-1,2-diamine

Compound 21 was prepared according to general procedure from dibenzylamine (100 \(\mu\)L, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a white solid (65.2 mg, 0.133 mmol, 67% yield). \(R_f = 0.63\) (hexanes:ethyl acetate= 10:1). \textbf{M.p. = 102-105 °C. LRMS} (EI, 70 eV): \(m/z\) (%): 91(100), 210(79), 211(13), 92(8), 65(8), 181(4), 118(2), 89(2), 212(1), 208(1), 73(1), 109(1), 63(1), 207(1), 397(1), 51(1), 182(1), 165(1), 77(1). \textbf{\(^1\)H NMR} (250 MHz, Chloroform-\(d\)) \(\delta\) 7.76 – 6.93 (m, 20H), 3.87 – 3.62 (m, 6H), 3.54 (\(tt, J = 12.8, 6.4\) Hz, 1H), 3.35 (\(d, J = 13.5\) Hz, 2H), 3.03 (\(dd, J = 13.6, 7.2\) Hz, 1H), 2.74 (\(dd, J = 13.6, 4.2\) Hz, 1H). \textbf{\(^{19}\)F NMR} (235 MHz, Chloroform-\(d\)) \(\delta\) -67.32. \textbf{\(^{13}\)C NMR} (63 MHz, Chloroform-\(d\)) \(\delta\) 139.2, 138.7, 129.3, 129.1, 128.4, 128.4, 127.6 (\(d, J = 290.1\) Hz), 127.3, 127.2, 58.7, 57.5 (\(q, J = 24.5\) Hz), 54.5, 51.6.
IR (ATR, cm\(^{-1}\)) 3083, 3063, 3026, 3005, 2981, 2910, 2821, 1738, 1599, 1493, 1452, 1370, 1280, 1262, 1239, 1196, 1163, 1134, 1109, 1096, 1069, 1045, 1028, 973, 959, 913, 746, 734, 695, 588, 547, 516, 482, 471, 403. **HRMS** m/z [M+H]\(^+\) calculated for C\(_{31}\)H\(_{32}\)N\(_2\)F\(_3\): 489.2518, found: 489.2516.

Synthesis of compound 22

Tetramethyl 2,2',2'',2'''-((3,3,3-trifluoropropane-1,2-diyl)bis(azanetriyl))tetraacetate

Compound 22 was prepared according to general procedure from dimethyl 2,2'-azanediyldiacetate (121 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and I (140 mg, 0.3 mmol, 1 equiv) to afford a colorless liquid (122 mg, 0.293 mmol, 98% yield). **Rf** = 0.30 (hexanes:ethyl acetate= 7:3). **LRMS** (EI, 70 eV): m/z (%): 416(1), 358(3), 357(20), 256(3), 256(3), 225(4), 198(3), 196(4), 175(8), 174(100), 147(2), 146(17), 146(14), 116(13), 74(2), 56(2). **\(^1\)H NMR** (250 MHz, Chloroform-\(d\)) \(\delta\) 3.64 (s, 21H), 3.11 (dd, \(J\) = 14.3, 8.1 Hz, 1H), 2.97 (dd, \(J\) = 14.3, 4.2 Hz, 1H). **\(^{19}\)F NMR** (235 MHz, Chloroform-\(d\)) \(\delta\) -70.72. **\(^{13}\)C NMR** (63 MHz, Chloroform-\(d\)) \(\delta\) 171.8, 171.5, 126.5 (q, \(J\) = 290.2, 289.6, 289.1 Hz), 63.1 (q, \(J\) = 25.3 Hz), 55.1, 52.6, 51.7, 51.5, 50.7. **IR** (ATR, cm\(^{-1}\)) 3063, 2968, 2885, 2863, 2812, 1721, 1601, 1510, 1451, 1395, 1314, 1270, 1245, 1160, 1106, 1069, 1054, 1027, 862, 790, 773, 734, 706, 686, 584, 544, 518, 503, 452, 415. **HRMS** m/z [M+H]\(^+\) calculated for C\(_{15}\)H\(_{24}\)N\(_2\)O\(_8\)F\(_3\): 417.1485, found: 417.1489.

Synthesis of compound 23

\(N,N'-(3,3,3\text{-trifluoropropane-1,2-diyl)bis(N-(4-methoxybenzyl)-O-methylhydroxylamine}}\)

Compound 23 was prepared according to general procedure from \(N\)-(4-methoxybenzyl)-O-methylhydroxylamine (125 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and I (140 mg, 0.3 mmol, 1 equiv) to afford a colorless liquid (84.9 mg, 0.198 mmol, 66% yield). **Rf** = 0.44 (hexanes:ethyl acetate= 10:1). **LRMS** (EI, 70 eV): m/z (%): 398(1), 397(6), 365(1), 207(1), 180(3), 122(9), 121(100), 91(3), 78(3), 77(3), 73(2). **\(^1\)H NMR** (250 MHz, Chloroform-\(d\)) \(\delta\) 7.20 (d, \(J\) = 8.6 Hz, 2H), 7.17 (d, \(J\) = 8.6 Hz, 2H), 6.77 (d, \(J\) = 8.5 Hz, 2H), 6.74 (d, \(J\) = 8.6 Hz, 2H), 3.98 (d, \(J\) = 12.8 Hz, 1H), 3.82 (d, \(J\) = 12.8 Hz, 1H), 3.76 – 3.62 (m, 8H), 3.31 (ddt, \(J\) = 16.1, 11.2, 5.7 Hz, 1H), 3.20 (s, 7H), 2.81 (dd, \(J\) = 14.1, 4.9 Hz, 1H). **\(^{19}\)F NMR** (235 MHz, Chloroform-\(d\)) \(\delta\) -71.11. **\(^{13}\)C NMR** (63 MHz, Chloroform-\(d\)) \(\delta\) 159.2 (d, \(J\) = 3.4 Hz), 130.9, 129.1, 129.0, 125.8 (q, \(J\) = 283.0 Hz), 113.8, 62.3, 61.8 (q, \(J\) = 26.5 Hz), 61.1, 61.0, 59.0, 55.3, 51.9. **IR** (ATR, cm\(^{-1}\)) 3104, 3061,

\textbf{Synthesis of compound 24}

3,3,3-trifluoro- \(N^1,N^2 \)-dihexyl- \(N^1,N^2 \)-bis(4-methoxybenzyl)propane-1,2-diamine

Compound 24 was prepared according to general procedure from \(N \)-(4-methoxybenzyl)hexan-1-amine (111 mg, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a colorless oil (80.1 mg, 0.149 mmol, 75% yield). \(R_f = 0.53 \) (hexanes:ethyl acetate= 10:1). \textbf{LRMS} (EI, 70 eV): m/z (%): 236(1), 235(8), 234(46), 232(1), 220(1), 123(1), 122(11), 121(100), 91(2), 90(1), 78(2), 77(2). \textbf{\(^1H\) NMR} (250 MHz, Chloroform-\(d \)) \(\delta \) 7.2 – 7.1 (m, 4H), 6.8 (d, \(J = 3.5 \) Hz, 2H), 6.8 (d, \(J = 3.5 \) Hz, 2H), 3.7 (s, 3H), 3.7 (s, 3H), 3.7 – 3.5 (m, 2H), 3.5 (d, \(J = 13.5 \) Hz, 1H), 3.4 – 3.2 (m, 2H), 2.7 (dd, \(J = 13.7, 7.0 \) Hz, 1H), 2.6 (dd, \(J = 9.2, 5.6 \) Hz, 1H), 2.6 – 2.4 (m, 2H), 2.3 (qt, \(J = 13.0, 7.0 \) Hz, 2H), 1.5 – 1.3 (m, 4H), 1.4 – 1.0 (m, 12H), 0.9 – 0.8 (m, 6H). \textbf{\(^{19}F\) NMR} (235 MHz, Chloroform-\(d \)) \(\delta \) -68.1. \textbf{\(^{13}C\) NMR} (63 MHz, Chloroform-\(d \)) \(\delta \) 158.8, 158.7, 132.0, 131.5, 130.2, 130.0, 127.6 (q, \(J = 290.6 \) Hz), 113.6, 113.6, 58.9 (q, \(J = 23.8 \) Hz), 58.4, 55.3, 54.7, 54.1, 51.7, 50.5, 31.9, 31.9, 28.9, 27.2, 26.8, 22.8, 14.2. \textbf{IR} (ATR, cm\(^{-1}\)) 3061, 3031, 2997, 2955, 2929, 2857, 2836, 1737, 1612, 1510, 1465, 1374, 1300, 1244, 1170, 1153, 1100, 1036, 980, 909, 820, 760, 733, 700, 571, 516. \textbf{HRMS} m/z [M+H]^+ calculated for C_{31}H_{48}N_{2}O_{2}F_{3}^+: 537.3668, found: 537.3671.

\textbf{Synthesis of compound 25}

\(N^1,N^2 \)-dicyclopropyl-3,3,3-trifluoro-\(N^1,N^2 \)-bis(4-methoxybenzyl)propane-1,2-diamine

Compound 25 was prepared according to general procedure from \(N \)-(4-methoxybenzyl)cyclopropanamine (66.5 mg, 0.375 mmol, 2.5 equiv), sodium carbonate (23.8 mg, 0.225 mmol, 1.5 equiv) and 1 (69.9 mg, 0.15 mmol, 1 equiv) to afford a pale yellow oil (56.1 mg, 0.125 mmol, 83% yield). \(R_f = 0.45 \) (hexanes:ethyl acetate= 10:1). \textbf{LRMS} (EI, 70 eV): m/z (%): 447(1), 327(1), 191(2), 190(16), 190(8), 176(2), 122(10), 121(100), 91(3), 78(4), 77(4). \textbf{\(^1H\) NMR} (250 MHz, Chloroform-\(d \)) \(\delta \) 7.26 – 7.14 (m, 4H), 6.96 – 6.81 (m, 4H), 3.93 – 3.57 (m, 9H), 3.76 (d, \(J = 13.6 \) Hz, 1H), 3.63 (d, \(J = 13.6 \) Hz, 1H), 3.03 (dd, \(J = 13.7, 7.1 \) Hz, 1H), 2.92 (dd, \(J = 13.6, 5.4 \) Hz, 1H), 2.39 – 2.24 (m, 1H), 2.26 (s, 0H), 1.81 (p, \(J = 5.5 \) Hz, 1H), 0.57 – 0.20 (m, 8H). \textbf{\(^{19}F\) NMR} (235 MHz, Chloroform-\(d \)) \(\delta \) -67.9. \textbf{\(^{13}C\) NMR} (63 MHz, Chloroform-\(d \)) \(\delta \) 158.85, 158.76, 132.18, 130.81,
130.27, 130.02, 127.43 (q, J = 289.1 Hz), 113.50, 113.43, 60.77 (q, J = 24.2 Hz), 58.68, 55.65, 55.24, 52.27, 37.23, 35.06, 8.46, 7.45, 7.26, 7.15. IR (ATR, cm⁻¹) 3090, 3074, 3006, 2952, 2936, 2910, 2836, 1738, 1611, 1585, 1510, 1458, 1442, 1350, 1300, 1242, 1173, 1144, 1106, 1035, 1021, 907, 821, 761, 733, 598, 516. HRMS m/z [M+H]^+ calculated for C_{25}H_{32}N_{2}O_{2}F_{3}: 449.2416, found: 449.2406.

Synthesis of compound 26

2,2′-(((3,3,3-trifluoropropane-1,2-diyl)bis((4-methoxybenzyl)azanediyl))diacetate

Compound 26 was prepared according to general procedure from ethyl (4-methoxybenzyl)glycinate (167 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and I (140 mg, 0.3 mmol, 1 equiv) to afford a colorless liquid (128.0 mg, 0.237 mmol, 79% yield). Rf = 0.22 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 376(2), 222(1), 157(3), 156(32), 155(10), 154(100), 140(3), 139(4), 138(6), 125(2), 119(4), 118(6), 113(2), 111(6), 91(2), 77(3), 75(3). \(^1\)H NMR (250 MHz, Chloroform-d) \(\delta\) 7.32 (d, \(J = 8.6\) Hz, 2H), 7.15 (d, \(J = 8.6\) Hz, 2H), 6.84 (d, \(J = 6.4\) Hz, 2H), 6.81 (d, \(J = 6.2\) Hz, 2H), 4.22 – 4.03 (m, 4H), 3.92 (d, \(J = 13.3\) Hz, 1H), 3.84 – 3.62 (m, 9H), 3.68 – 3.24 (m, 5H), 3.11 (dd, \(J = 14.2, 7.9\) Hz, 1H), 2.95 (dd, \(J = 14.0, 4.7\) Hz, 1H), 1.32 – 1.17 (m, 6H). \(^19\)F NMR (235 MHz, Chloroform-d) \(\delta\) -68.56. \(^13\)C NMR (63 MHz, Chloroform-d) \(\delta\) 171.4, 159.1, 159.0, 130.5, 130.3, 130.1, 127.2 (q, \(J = 290.7\) Hz), 113.7, 113.7, 60.6, 60.2, 59.4 (q, \(J = 24.2\) Hz), 57.8, 55.3, 55.2, 53.6, 51.6, 50.4, 14.3, 14.2. IR (ATR, cm⁻¹) 3101, 3073, 3061, 3034, 2980, 2958, 2938, 2908, 2837, 1733, 1612, 1585, 1510, 1463, 1443, 1371, 1302, 1244, 1171, 1144, 1097, 1031, 916, 832, 812, 761, 732, 698, 571, 518. HRMS m/z [M+H]^+ calculated for C_{27}H_{36}N_{2}O_{6}F_{3}: 541.2525, found: 541.2537.

Synthesis of compound 27

\(N^1,N^2\)-diallyl-3,3,3-trifluoro- \(N^1,N^2\)-bis(4-methoxybenzyl)propane-1,2-diamine

Compound 27 was prepared according to general procedure from \(N\)-(4-methoxybenzyl)prop-2-en-1-amine A1 (88.6 mg, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and I (93.2 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (66.9 mg, 0.149 mmol, 75% yield). Rf = 0.47 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 91(100), 210(79), 211(13), 92(8), 65(8), 181(4), 118(2), 89(2), 212(1), 208(1), 73(1), 109(1), 63(1), 207(1), 397(1), 51(1), 182(1), 165(1), 77(1). \(^1\)H NMR (250 MHz, Chloroform-d) \(\delta\) 7.25 – 7.08 (m, 4H), 6.87 – 6.70 (m, 4H), 5.93 – 5.59 (m, 2H), 5.23 – 4.98 (m, 4H), 3.75 (s, 3H), 3.74 (s, 3H), 3.72 – 3.63 (m,
2H), 3.58 (d, $J = 17.8$ Hz, 2H), 3.44 (td, $J = 8.5, 4.3$ Hz, 1H), 3.32 (d, $J = 13.2$ Hz, 1H), 3.19 (dd, $J = 18.9, 6.3$ Hz, 1H), 3.06 (dd, $J = 14.7, 6.0$ Hz, 1H), 2.88 (dd, $J = 6.9, 5.0$ Hz, 1H), 2.80 (dd, $J = 11.4, 5.9$ Hz, 1H), 2.57 (dd, $J = 13.7, 4.3$ Hz, 1H). 19F NMR (235 MHz, Chloroform-d) δ -68.3. 13C NMR (63 MHz, Chloroform-d) δ 158.9, 137.0, 135.5, 131.0, 130.3, 130.0, 127.5 (q, $J = 289.8$ Hz), 117.9, 117.5, 113.8, 113.7, 58.0, 57.7 (q, $J = 24.0$ Hz), 56.8, 55.3, 53.7, 53.4, 50.5. IR (ATR, cm$^{-1}$) 3075, 3002, 2953, 2936, 2910, 2836, 1738, 1612, 1510, 1463, 1442, 1368, 1300, 1242, 1170, 1149, 1093, 1035, 993, 879, 808, 760, 703, 564, 515. HRMS m/z [M+H]$^+$ calculated for C$_{25}$H$_{32}$N$_2$F$_3$: 449.2416, found: 449.2421.

Synthesis of compound 28

N^1,N^2-diethyl-3,3,3-trifluoro-N^1,N^2-di(prop-2-yn-1-yl)propane-1,2-diamine

Compound 28 was prepared according to general procedure from N-ethylprop-2-yn-1-aminium chloride (89.7 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (127 mg, 0.75 mmol, 4.0 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless liquid (29.4 mg, 0.113 mmol, 38% yield). R_f = 0.34 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 221(2), 221(1), 164(1), 110(1), 108(1), 97(4), 97(3), 96(100), 69(1), 68(3), 68(3), 66(2), 56(6). 1H NMR (250 MHz, Chloroform-d) δ 3.72 – 3.40 (m, 5H), 2.97 – 2.77 (m, 2H), 2.71 (dd, $J = 13.9, 4.6$ Hz, 2H), 2.15 (dd, $J = 13.9, 4.6$ Hz, 2H), 2.23 (t, $J = 2.3$ Hz, 1H), 2.18 (t, $J = 2.2$ Hz, 1H), 1.10 (t, $J = 7.0$ Hz, 3H), 1.07 (t, $J = 7.1$ Hz, 3H). 19F NMR (235 MHz, Chloroform-d) δ -69.41. 13C NMR (63 MHz, Chloroform-d) δ 127.0 (q, $J = 289.2$ Hz), 80.8, 78.6, 73.1, 72.4, 60.3 (q, $J = 24.7$ Hz), 49.6 (d, $J = 1.6$ Hz), 48.0, 44.3, 41.9, 40.1, 13.9, 12.9 (q, $J = 1.5$ Hz). IR (ATR, cm$^{-1}$) 3308, 2973, 2938, 2849, 1737, 1459, 1435, 1382, 1326, 1296, 1249, 1156, 1097, 1063, 1044, 981, 936, 900, 856, 798, 700, 627, 498. HRMS m/z [M+H]$^+$ calculated for C$_{13}$H$_{20}$N$_2$F$_3$: 261.1579, found: 261.1580.

Synthesis of compound 29

3,3,3-trifluoro-N^1,N^2-bis(4-methoxybenzyl)-N^1,N^2-di(prop-2-yn-1-yl)propane-1,2-diamine

Compound 29 was prepared according to general procedure from N-(4-methoxybenzyl)prop-2-yn-1-amine (131 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless liquid (110.2 mg, 0.248 mmol, 82% yield). R_f = 0.37 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 365(1), 323(2), 283(1), 189(3), 188(20), 122(9), 121(100), 91(2), 78(3), 77(2), 77(1). 1H NMR (250 MHz, Chloroform-d) δ 7.28 – 7.08 (m, 4H), 6.75 (d, $J = 8.3$ Hz, 4H), 3.84 (d, $J = 13.6$ Hz, 1H), 3.76 –
3.43 (m, 10H), 3.37 (dd, J = 5.8, 2.3 Hz, 2H), 3.26 (s, 2H), 2.91 (dd, J = 13.4, 8.9 Hz, 1H), 2.76 (dd, J = 13.6, 4.5 Hz, 1H), 2.22 – 2.09 (m, 2H). 19F NMR (235 MHz, Chloroform-d) δ -68.86. 13C NMR (63 MHz, Chloroform-d) δ 159.1, 130.5, 130.2, 130.0, 127.1 (q, J = 288.9 Hz), 113.9 (d, J = 4.6 Hz), 80.6, 78.2, 73.7, 72.8, 58.7 (q, J = 24.8 Hz), 57.6, 55.3, 53.3, 49.5, 41.3, 39.9. IR (ATR, cm⁻¹) 3292, 3064, 3034, 3000, 2955, 2935, 2908, 2836, 2725, 1612, 1585, 1510, 1463, 1442, 1367, 1302, 1244, 1171, 1146, 1095, 1034, 981, 903, 875, 831, 811, 761, 699, 632, 515, 428. HRMS m/z [M+H]^+: 445.2103, found: 445.2104.

Synthesis of compound 30

3,3,3-trifluoro-N1,N2-diisobutyl-N1,N2-bis(3-phenylprop-2-yn-1-yl)propane-1,2-diamine

Compound 30 was prepared according to general procedure from N-isobutyl-3-phenylprop-2-yn-1-amine (154.8 mg, 0.80 mmol, 2.5 equiv), sodium carbonate (50.9 mg, 0.48 mmol, 1.5 equiv) and 1 (149.1 mg, 0.32 mmol, 1 equiv) to afford a colorless oil (119.4 mg, 0.255 mmol, 80% yield). Rf = 0.68 (hexanes:diisopropyl ether= 10:1). 1H NMR (250 MHz, Chloroform-d) δ 7.46 – 7.33 (m, 4H), 7.31 – 7.16 (m, 6H), 3.80 (d, J = 17.3 Hz, 1H), 3.75 – 3.55 (m, 4H), 2.96 (dd, J = 13.8, 7.5 Hz, 1H), 2.83 (dd, J = 13.7, 4.9 Hz, 1H), 2.66 (dd, J = 12.9, 7.1 Hz, 1H), 2.51 (dd, J = 12.9, 7.6 Hz, 1H), 2.34 (td, J = 12.3, 11.1, 7.3 Hz, 2H), 1.80 (dhept, J = 20.1, 6.7 Hz, 2H), 0.98 – 0.85 (m, 12H). 19F NMR (235 MHz, Chloroform-d) δ -68.95. 13C NMR (63 MHz, Chloroform-d) δ 131.9, 131.7, 128.4, 128.1, 127.2 (q, J = 289.1 Hz), 123.5, 123.4, 86.6, 85.7, 84.5, 84.4, 62.8, 61.4 (q, J = 24.7 Hz), 59.2, 51.4, 42.9, 41.4, 26.7, 26.2, 20.9, 20.7, 20.5. IR (ATR, cm⁻¹) 3081, 3060, 3034, 3022, 2955, 2928, 2905, 2870, 2824, 2746, 2725, 1598, 1489, 1468, 1442, 1385, 1365, 1327, 1251, 1156, 1103, 1044, 1029, 946, 913, 868, 754, 689, 600, 526, 509, 628, 596, 566, 540, 510, 481, 461. HRMS m/z [M+H]^+ calculated for C25H28N2O2F3+: 445.2103, found: 445.2104.
Synthesis of compound 31

Compound 31 was prepared according to general procedure from \(N\)-(3-phenylprop-2-yn-1-yl)cyclohexanamine (160 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless liquid (143.3 mg, 0.275 mmol, 92% yield). \(R_f = 0.63 \) (hexanes:diisopropyl ether= 10:1). ¹H NMR (250 MHz, Chloroform-\(d \)) \(\delta \) 7.41 – 7.24 (m, 4H), 7.23 – 7.03 (m, 6H), 3.76 (s, 2H), 3.73 – 3.56 (m, 3H), 2.96 (d, \(J = 6.0 \) Hz, 2H), 2.84 – 2.67 (m, 1H), 2.50 (t, \(J = 9.7, 7.8 \) Hz, 1H), 1.86 (q, \(J = 11.2, 10.7 \) Hz, 4H), 1.77 – 1.60 (m, 4H), 1.50 (d, \(J = 11.3 \) Hz, 2H), 1.43 – 0.87 (m, 10H). ¹³C NMR (63 MHz, Chloroform-\(d \)) \(\delta \) 131.7, 128.3, 128.3, 128.0, 127.5 (q, \(J = 290.4 \) Hz), 123.7, 123.6, 88.2, 87.1, 84.9, 83.6, 62.3, 59.4 (q, \(J = 24.5 \) Hz), 58.3, 47.0, 40.0, 36.6, 32.6, 31.3, 30.5, 30.2, 26.3, 26.1, 26.1, 26.0. IR (ATR, cm⁻¹) 3081, 3057, 3033, 3020, 2927, 2853, 2667, 1598, 1489, 1443, 1382, 1346, 1252, 1154, 1107, 1071, 1028, 1001, 947, 913, 892, 873, 846, 753, 689, 604, 526, 510. HRMS m/z [M+H]⁺ calculated for \(C_{33}H_{40}N_{2}F_{3} \): 521.3144, found: 521.3142.

Synthesis of compound 32

Di-tert-butyl 3,3'-((3,3,3-trifluoropropane-1,2-diyl)bis(phenethylazanediyl))bis(azetidine-1-carboxylate)

Compound 32 was prepared according to general procedure from tert-butyl 3-(phenethylamino)azetidine-1-carboxylate (138 mg, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (85.9 mg, 0.133 mmol, 66% yield). \(R_f = 0.48 \) (hexanes:ethyl acetate= 7:3). LRMS (EI, 70 eV): m/z (%): 362(24), 361(100), 271(5), 269(10), 257(5), 189(10), 165(12), 163(15), 160(5), 134(6), 106(8), 105(89), 103(6), 91(12), 79(11), 77(9), 56(6). ¹H NMR (250 MHz, Chloroform-\(d \)) \(\delta \) 7.3 – 7.0 (m, 10H), 4.0 – 3.8 (m, 6H), 3.7 – 3.5 (m, 4H), 3.3 – 3.2 (m, 1H), 3.2 – 2.9 (m, 2H), 2.8 – 2.5 (m, 8H), 1.4 (s, 9H), 1.4 (s, 9H). ¹⁹F NMR (235 MHz, Chloroform-\(d \)) \(\delta \) -69.5. ¹³C NMR (63 MHz, Chloroform-\(d \)) \(\delta \) 156.3, 156.1, 139.5, 139.2, 128.8, 128.7, 128.6, 128.5, 126.8 (q, \(J = 290.4 \) Hz), 126.5, 126.4, 79.7, 79.6, 60.7 (q, \(J = 24.0 \) Hz), 55.1, 53.7, 51.8, 49.4, 47.9, 47.0, 36.4, 33.2, 28.4, 28.4. IR (ATR, cm⁻¹) 3087, 3064, 3027, 2976, 2965, 2934, 2884, 2247, 1690, 1477, 1455, 1391, 1365, 1295, 1253, 1157, 1117, 1031, 873, 846, 753, 689, 604, 526, 510.
907, 859, 773, 727, 698, 647, 569, 503. **HRMS m/z [M+H]^+** calculated for C_{35}H_{50}N_{4}O_{4}F_{3}^+: 647.3784, found: 647.3795.

Synthesis of compound 33

1,1’-(3,3,3-trifluoropropane-1,2-diyil)bis(3-((tert-butyldimethylsilyl)oxy)azetidine)

Compound 33 was prepared according to general procedure from 3-((tert-butyldimethylsilyl)oxy)azetidine (141 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless oil (92.8 mg, 0.198 mmol, 66% yield). **Rf** = 0.33 (hexanes:ethyl acetate= 10:1). **LRMS** (EI, 70 eV): m/z (%): 453(2), 453(1), 411(3), 202(9), 201(17), 201(14), 200(100), 200(82), 158(2), 144(2), 128(2), 115(2), 103(6), 102(4), 101(37), 77(2), 75(5), 74(2), 73(16), 60(2), 59(11), 57(1).

1H NMR (250 MHz, Chloroform-d) δ 4.4 (dp, J = 12.4, 6.2 Hz, 2H), 3.7 (dt, J = 12.0, 4.9 Hz, 4H), 3.1 (t, J = 6.6 Hz, 1H), 3.0 (t, J = 6.8 Hz, 1H), 2.7 (td, J = 6.4, 3.1 Hz, 2H), 2.7 – 2.3 (m, 3H), 0.8 (s, 18H), -0.0 (s, 12H). **19F NMR** (235 MHz, Chloroform-d) δ -72.1. **13C NMR** (63 MHz, Chloroform-d) δ 125.9 (q, J = 282.8 Hz), 65.5, 65.5 (q, J = 25.7 Hz), 65.0, 62.7, 62.1, 57.0 (d, J = 2.0 Hz), 25.9, 18.1, -4.9. **IR** (ATR, cm⁻¹) 2952, 2846, 2771, 1733, 1480, 1438, 1367, 1306, 1259, 1201, 1153, 1123, 1048, 960, 913, 865, 733, 679, 584, 505. **HRMS m/z [M+H]^+** calculated for C_{21}H_{44}N_{2}O_{2}F_{3}Si_{2}^+: 469.2893, found: 469.2892.

Synthesis of compound 34

Dimethyl 1,1’-(3,3,3-trifluoropropane-1,2-diyil)bis(azetidine-3-carboxylate)

Compound 34 was prepared according to the general procedure 3-(methoxycarbonyl)azetidin-1-ium trifluoromethanesulfonate (137 mg, 0.5 mmol, 2.5 equiv), sodium carbonate (84.8 mg, 0.8 mmol, 4.0 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (47.9 mg, 0.148 mmol, 74% yield). **Rf** = 0.28 (hexanes:ethyl acetate= 7:3). **LRMS** (EI, 70 eV): m/z (%): 293(5), 239(3), 196(2), 129(7), 128(100), 110(2), 69(1), 68(5), 59(4), 55(11). **1H NMR** (250 MHz, Chloroform-d) δ 3.76 – 3.59 (m, 8H), 3.63 – 3.49 (m, 3H), 3.47 (t, J = 7.3 Hz, 1H), 3.41 – 3.16 (m, 4H), 2.80 – 2.59 (m, 1H), 2.62 – 2.47 (m, 2H). **19F NMR** (235 MHz, Chloroform-d) δ -72.00. **13C NMR** (63 MHz, Chloroform-d) δ 173.3, 173.1, 125.6 (q, J = 282.9 Hz), 64.5 (q, J = 25.8 Hz), 57.7, 56.9, 56.0 (q, J = 2.1 Hz), 55.3, 52.0, 34.5, 33.7. **IR** (ATR, cm⁻¹) 2955, 2846, 2771, 1733, 1480, 1438, 1367, 1306, 1259, 1201, 1153, 1123, 1048, 960, 913, 865, 733, 679, 584, 505. **HRMS m/z [M+H]^+** calculated for C_{13}H_{20}N_{2}O_{4}F_{3}^+: 325.1375, found: 325.1380.
Synthesis of compound 35

1,1’-(3,3,3-trifluoropropane-1,2-diyl)bis(pyrrolidin-1-ium) 2,2,2-trifluoroacetate

Compound 35 was prepared according to the general procedure from pyrrolidine (63 µL, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) and isolated as the corresponding bisamminium trifluoroacetate salt, which is a pale yellow syrup (71.5 mg, 0.154 mmol, 51% yield). \(R_f = 0.25 \) (hexanes:ethyl acetate= 7:3). \(\text{LRMS (EI, 70 eV): m/z (%):} \)

\[
\begin{align*}
84(100), 55(9), 85(6), 110(2), 54(2), 56(2), 96(2), 69(1), 83(1), 60(1), 82(1), 70(1), 152(1). \\
\end{align*}
\]

\(\text{1H NMR (250 MHz, Methylenechloride-d}_2) \delta 11.26 \text{ (bs, 2H), 4.10 \text{–} 3.10 \text{ (m, 6H), 2.92 \text{–} 2.17 \text{ (m, 4H), 1.79 \text{ (d, J = 6.4 Hz, 4H).}} \)

\(\text{19F NMR (235 MHz, Methylenechloride-d}_2) \delta -66.21 \text{ (s, 3F), -74.39 \text{ (s, 6F).}} \)

\(\text{13C NMR (63 MHz, Methylenechloride-d}_2) \delta 126.1 \text{ (q, J = 294.0 Hz), 114.3 \text{ (q, J = 291.1 Hz), 58.8 \text{ (q, J = 26.7 Hz), 56.0, 52.5 \text{ (q, J = 2.4 Hz), 48.9, 24.4, 23.5.}} \)

\(\text{IR (ATR, cm}\text{-1}) 2971, 2946, 2927, 2856, 1740, 1672, 1458, 1365, 1139, 1113, 876, 835, 795, 720, 703, 597, 518, 428. \)

\(\text{HRMS m/z [M+H]+ calculated for C}_{11}\text{H}_{20}\text{N}_{2}\text{F}_3+: 237.1579, found: 237.1582.} \)

Synthesis of compound 36

1,1’-(3,3,3-trifluoropropane-1,2-diyl)di-3-piperidine

Compound 36 was prepared according to general procedure from piperidine (103 µL, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless oil (52.9 mg, 0.200 mmol, 67% yield). \(R_f = 0.33 \) (hexanes:ethyl acetate= 10:1). \(\text{LRMS (EI, 70 eV): m/z (%):} \)

\[
\begin{align*}
293(5), 239(3), 196(2), 129(7), 128(100), 110(2), 69(1), 68(5), 59(4), 55(11). \\
\end{align*}
\]

\(\text{1H NMR (250 MHz, Chloroform-d) \delta 3.16 \text{ (ddq, J = 12.5, 9.0, 4.5, 3.6 Hz, 1H), 2.90 \text{–} 2.57 \text{ (m, 5H), 2.56 \text{–} 2.32 \text{ (m, 5H), 1.67 \text{–} 1.22 \text{ (m, 12H).}} \)

\(\text{19F NMR (235 MHz, Chloroform-d) \delta -68.79.} \)

\(\text{13C NMR (63 MHz, Chloroform-d) \delta 127.2 \text{ (q, J = 290.6 Hz), 64.3 \text{ (q, J = 23.8 Hz), 55.1 \text{ (q, J = 1.7 Hz), 54.8, 51.0, 27.1, 26.3, 24.8, 24.5.}} \)

\(\text{IR (ATR, cm}\text{-1}) 2932, 2854, 2823, 2813, 2782, 1740, 1469, 1442, 1381, 1356, 1319, 1309, 1292, 1253, 1201, 1151, 1134, 1099, 1078, 1065, 1041, 1018, 995, 963, 906, 868, 844, 784, 764, 710, 699, 630, 593, 457. \)

\(\text{HRMS m/z [M+H]+ calculated for C}_{13}\text{H}_{24}\text{N}_{2}\text{F}_3+: 265.1892, found: 265.1892.} \)
Synthesis of compound 37

1,1′-(3,3,3-trifluoropropan-1,2-diyl)bis(3-((tert-butyldimethylsilyl)oxy)piperidine)

Compound 37 was prepared according to general procedure from 3-((tert-butyldimethylsilyl)oxy)piperidine (162 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless oil (134 mg, 0.255 mmol, 85% yield). Rf = 0.65 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 467(1), 310(1), 231(1), 230(6), 229(23), 228(100), 226(1), 190(1), 170(1), 142(1), 128(1), 121(1), 112(1), 106(2), 101(1), 96(4), 89(1), 77(1), 75(2), 74(1), 73(11), 59(1). 1H NMR (250 MHz, Chloroform-d) 3.77 – 3.49 (m, 2H), 3.35 – 3.10 (m, 1H), 3.06 – 2.25 (m, 8H), 2.13 – 1.76 (m, 4H), 1.74 – 1.34 (m, 7H), 1.32 – 1.07 (m, 2H), 0.88 (s, 18H), 0.19 – 0.08 (m, 12H). 19F NMR (235 MHz, Chloroform-d) δ -68.97, -69.44, -69.48, -69.52. 13C NMR (63 MHz, Chloroform-d) δ 129.3, 129.3, 129.2, 124.7, 124.6, 69.1, 69.0, 68.9, 68.7, 68.5, 68.5, 64.5, 64.1, 64.1, 63.8, 63.7, 63.7, 63.4, 63.3, 63.0, 62.9, 62.7, 62.1, 62.1, 61.6, 61.3, 58.9, 58.7, 57.6, 56.5, 54.3, 54.1, 54.0, 53.8, 53.7, 53.4, 53.4, 51.3, 50.3, 49.5, 49.4, 34.5, 34.4, 34.1, 34.1, 26.0, 26.0, 18.3, 18.3, 18.3, -4.5, -4.5. IR (ATR, cm⁻¹) 2931, 2888, 2857, 2826, 2802, 2710, 1472, 1388, 1361, 1320, 1253, 1164, 1097, 1039, 987, 939, 832, 773, 702, 668, 466, 394. HRMS m/z [M+H]+ calculated for C₂₅H₅₂N₂O₂F₃Si₂+: 525.3519, found: 525.3508.

Synthesis of compound 38

1,1′-(3,3,3-trifluoropropan-1,2-diyl)bis(3-((tert-butyldimethylsilyl)oxy)methyl)piperidine

Compound 38 was prepared according to general procedure from 3-((tert-butyldimethylsilyl)oxy)methyl)piperidine (172 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless oil (126 mg, 0.228 mmol, 76% yield). Rf = 0.55 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 1H NMR (250 MHz, Chloroform-d) 3.54 – 3.30 (m, 4H), 3.21 (p, J = 8.4 Hz, 1H), 3.08 – 2.36 (m, 8H), 2.06 (t, J = 10.2 Hz, 1H), 1.95 – 1.35 (m, 9H), 0.89 (s, 20H), 0.03 (s, 12H). 19F NMR (235 MHz, Chloroform-d) δ -68.87, -68.96, -69.00, -69.12. 13C NMR (63 MHz, Chloroform-d) δ 127.2 (q, J = 290.5 Hz), 64.6 (q, J = 23.7, 23.2 Hz), 64.0 (q, J = 24.0 Hz), 57.8, 57.7, 57.4, 55.0, 54.9, 54.8, 54.6, 54.5, 52.8, 51.9, 51.8, 50.3, 50.1, 39.9, 39.8, 39.3, 39.3, 39.1, 39.1, 27.5, 27.2, 27.1, 26.1, 26.0, 25.9, 25.7, 25.2, 25.2, 25.1, 18.5, 18.4, -5.2, -5.3. IR (ATR, cm⁻¹) 2951, 2929, 2904, 2856, 2803, 2788, 2746, 2714, 1470, 1388, 1361, 1253, 1174, 1156, 1097, 1005, 939, 909, 834,
773, 734, 666, 397. **HRMS** m/z [M+H]+ calculated for C_{27}H_{56}N_{2}O_{2}F_{3}Si_{2}+: 553.3832, found: 553.3842.

Synthesis of compound 39

1,1’-(3,3,3-trifluoropropane-1,2-diyl)bis(4-benzylpiperidine)

Compound 39 was prepared according to general procedure from 4-benzylpiperidine (88 µL, 0.5 mmol, 2.5 equiv), sodium carbonate (31.8 mg, 0.3 mmol, 1.5 equiv) and 1 (93.2 mg, 0.2 mmol, 1 equiv) to afford a pale yellow oil (79.1 mg, 0.178 mmol, 89% yield). **Rf** = 0.23 (hexanes:ethyl acetate= 10:1). **LRMS** (EI, 70 eV): m/z (%): 256(1), 190(1), 189(15), 188(1), 117(2), 96(2), 92(1), 91(14), 82(1), 70(2), 68(1), 67(1), 55(2). **1H NMR** (250 MHz, Chloroform-d) δ 7.3 – 7.0 (m, 10H), 4.0 – 3.8 (m, 6H), 3.7 – 3.5 (m, 4H), 3.3 – 3.2 (m, 1H), 3.2 – 2.9 (m, 2H), 2.8 – 2.5 (m, 8H), 1.4 (s, 9H), 1.4 (s, 9H). **19F NMR** (235 MHz, Chloroform-d) δ -68.79. **13C NMR** (63 MHz, Chloroform-d) δ 140.8, 140.7, 129.2, 128.3, 128.3, 126.2 (q, J = 291.0 Hz), 126.0, 125.9, 63.7 (q, J = 24.2 Hz), 54.4, 54.1, 51.3, 48.8, 43.3, 43.2, 38.2, 37.8, 33.3, 33.1, 32.2, 32.1. **IR** (ATR, cm⁻¹) 3084, 3063, 3027, 2917, 2846, 2832, 2785, 2751, 2681, 1494, 1468, 1453, 1391, 1347, 1306, 1259, 1158, 1140, 1099, 1056, 1031, 973, 910, 862, 744, 698, 647, 613, 591, 574, 509, 444. **HRMS** m/z [M+H]+ calculated for C_{27}H_{36}N_{2}F_{3}+: 445.2831, found: 445.2832.

Synthesis of compound 40

4,4’-(3,3,3-trifluoropropane-1,2-diyl)bis(morpholin-4-iium) trifluoroacetate

Compound 40 was prepared according to general procedure from morpholine (66 µL, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) and isolated as the corresponding bisamminium trifluoroacetate salt, which is a colorless syrup (120 mg, 0.242 mmol, 81% yield). **Rf** = 0.45 (ethyl acetate). **LRMS** (EI, 70 eV): m/z (%): 100(100), 56(18), 101(9), 70(6), 55(5), 54(4), 124(3), 72(3), 74(2), 57(2), 98(2), 123(2), 168(2). **1H NMR** (250 MHz, Methylenechloride-d₂) δ 9.53 (s, 2H), 3.98 (s, 4H), 3.91 – 3.75 (m, 2H), 3.73 – 3.52 (m, 4H), 3.51 – 3.07 (m, 4H), 3.07 – 2.87 (m, 2H), 2.80 – 2.57 (m, 2H). **19F NMR** (235 MHz, Methylenechloride-d₂) -65.33 (s, 3F), -74.44 (s, 6F). **13C NMR** (63 MHz, Methylenechloride-d₂) 161.3 (q, J = 38.1 Hz), 125.7 (q, J = 293.0 Hz), 114.0 (q, J = 289.8, 286.9 Hz), 67.5, 64.1, 62.0 (q, J = 26.2 Hz), 53.3 (q, J = 2.8 Hz), 49.8. **IR** (ATR, cm⁻¹) 3458, 3305, 3020, 2968, 2929, 2863, 2708, 2576, 2473, 1777, 1709, 1672, 1458, 1367, 1304, 1248, 1158.
1139, 1110, 1051, 1018, 984, 950, 923, 909, 869, 854, 835, 797, 753, 720, 706, 639, 518, 482, 447, 428, 387. **HRMS** m/z [M+H]^+ calculated for C_{11}H_{20}N_{2}O_{2}F_{3}^+: 269.1477, found: 269.1482.

Synthesis of compound 41

4,4′-(3,3,3-trifluoropropane-1,2-diyl)bis(1-benzylpiperazine)

Compound 41 was prepared according to general procedure from morpholine (132 mg, 0.75 mmol, 2.5 equiv), sodium carbonate (47.7 mg, 0.45 mmol, 1.5 equiv) and 1 (140 mg, 0.3 mmol, 1 equiv) to afford a colorless syrup (61.1 mg, 0.137 mmol, 46% yield). Rf = 0.30 (hexanes:ethyl acetate= 7:3). **LRMS** (EI, 70 eV): m/z (%): 447(1), 446(5), 190(14), 189(100), 187(2), 146(5), 99(2), 98(3), 97(5), 92(4), 91(45), 83(2), 70(8), 65(2), 56(3). **1H NMR** (250 MHz, Chloroform-d) 7.38 – 7.05 (m, 10H), 3.42 (d, J = 6.4 Hz, 4H), 3.13 (td, J = 8.7, 3.3 Hz, 1H), 2.90 – 2.18 (m, 18H). **19F NMR** (235 MHz, Chloroform-d) δ -69.19. **13C NMR** (63 MHz, Chloroform-d) δ 138.1, 138.0, 129.3, 129.3, 128.3, 128.3, 127.2, 127.2, 126.8 (q, J = 289.9 Hz), 131.1, 63.4 (q, J = 24.4 Hz), 63.1, 63.1, 54.0, 53.4, 53.2, 49.5. **IR** (ATR, cm^{-1}) 3108, 3085, 3063, 3029, 3003, 2935, 2877, 2809, 2768, 2695, 2681, 1494, 1455, 1367, 1350, 1314, 1262, 1150, 1130, 1105, 1073, 1029, 1010, 909, 864, 825, 732, 696, 642, 605, 580, 455, 407. **HRMS** m/z [M+H]^+ calculated for C_{25}H_{34}N_{4}F_{3}^+: 447.2736, found: 447.2746.

Synthesis of compound 42

4,4′-(3,3,3-trifluoropropane-1,2-diyl)bis(1-(pyridin-2-yl)piperazine)

Compound 42 was prepared according to general procedure from 1-(pyridin-2-yl)piperazine (57.1 µL, 0.375 mmol, 2.5 equiv), sodium carbonate (23.8 mg, 0.225 mmol, 1.5 equiv) and 1 (70 mg, 0.15 mmol, 1 equiv) to afford a pale yellow oil (55.2 mg, 0.131 mmol, 88% yield). Rf = 0.28 (hexanes:ethyl acetate= 7:3). **LRMS** (EI, 70 eV): m/z (%): 420(3), 177(12), 176(100), 147(21), 133(5), 121(28), 119(7), 107(11), 95(5), 82(5), 79(9), 78(11), 56(6). **1H NMR** (250 MHz, Chloroform-d) 8.17 (dd, J = 4.9, 1.9 Hz, 2H), 7.53 – 7.36 (m, 2H), 6.69 – 6.53 (m, 4H), 3.63 – 3.25 (m, 9H), 3.09 – 2.74 (m, 5H), 2.76 – 2.47 (m, 5H). **19F NMR** (235 MHz, Chloroform-d) δ -69.33. **13C NMR** (63 MHz, Chloroform-d) δ 159.6 (d, J = 7.8 Hz), 148.0 (d, J = 1.6 Hz), 137.6, 126.6 (q, J = 289.1 Hz), 107.2 (d, J = 4.3 Hz), 63.4 (q, J = 24.8 Hz), 54.0 (q, J = 2.0 Hz), 53.3, 49.6, 46.3, 45.4. **IR** (ATR, cm^{-1}) 3097, 3050, 2936, 2888, 2836, 2756, 2690, 1592, 1563, 1479, 1455,
Synthesis of compound 43

3,3’-(3,3,3-trifluoropropane-1,2-diyl)bis(3-azabicyclo[3.2.2]nonane)

Compound 43 was prepared according to general procedure from 3-azabicyclo[3.2.2]nonane (125 mg, 0.4 mmol, 2.5 equiv), sodium carbonate (63.6 mg, 0.6 mmol, 1.5 equiv) and 1 (186 mg, 0.4 mmol, 1 equiv) to afford a white solid (80.5 mg, 0.234 mmol, 58% yield). Rf = 0.75 (hexanes:diisopropyl ether = 10:1).

M.p. = 69-72 °C. LRMS (EI, 70 eV): m/z (%): 186(1), 139(10), 138(100), 112(2), 106(1), 95(1), 95(1), 93(1), 91(1), 81(1), 81(1), 79(3), 77(2), 73(1), 68(1), 67(4), 67(3), 58(14), 55(4). ¹H NMR (250 MHz, Chloroform-d) δ: 3.30 (dd, J = 8.6, 5.5 Hz, 1H), 2.94 (qd, J = 11.4, 3.8 Hz, 7H), 2.62 (dddd, J = 35.2, 23.9, 13.4, 6.3 Hz, 11H), 1.90 (s, 5H), 1.71 (dd, J = 25.8, 5.3 Hz, 14H), 1.62 – 1.54 (m, 17H). ¹⁹F NMR (235 MHz, Chloroform-d) δ: -69.56. ¹³C NMR (63 MHz, Chloroform-d) δ: 127.6 (q, J = 291.2, 290.7 Hz), 63.8 (q, J = 23.9 Hz), 63.3, 59.4, 55.3 (q, J = 1.5 Hz), 31.6, 30.7, 25.9, 25.8, 25.7, 25.7. IR (ATR, cm⁻¹): 2925, 2900, 2857, 2812, 2793, 2758, 2715, 2677, 1451, 1402, 1387, 1364, 1323, 1292, 1263, 1200, 1177, 1150, 1136, 1126, 1095, 1042, 1011, 983, 957, 920, 875, 864, 852, 839, 805, 757, 713, 661, 590, 519, 484, 475. HRMS m/z [M+H]⁺ calculated for C₁₉H₂₈N₆F₃⁺: 345.2525, found: 345.2525.

Supplementary Figure 6: Unsuccessful substrates under conditions of homodiamination procedure.
Optimization of the reaction conditions for heterodiamination

An 8 mL test tube was charged with stirring bar, 1 (23.3 mg, 0.05 mmol), solvent (250 or 500 µL/0.05 mmol) and sodium carbonate (0-7.9 mg, 0-0.075 mmol, 0-1.5 equiv) according to **Supplementary Table 2**. To a stirred mixture, N-methyl-1-(naphthalen-1-yl)methanamine (1.0 equiv, neat or in corresponding solvent at 0.1-0.2 M concentration) was added via syringe in one portion or by syringe pump over the indicated time (t_1) and at temperature (T_1). After completion of addition, reaction mixture was stirred for indicated time (t_2) at the same temperature (T_1). Pyrrolidine (1.0-2.5 equiv) was added in one portion and the temperature was maintained at or allowed to reach T_2. Aliquots were taken after the indicated time (t_3) and analysed by GC-MS.

Supplementary Figure 7: Reaction scheme of heterodiamination procedure

Supplementary Table 2: Optimization of reaction conditions for heterodiamination

<table>
<thead>
<tr>
<th>#</th>
<th>Scale [mmol]</th>
<th>Na₂CO₃ [x equiv]</th>
<th>Pyrrolidine [y equiv]</th>
<th>Cfinal [mol/L]</th>
<th>Solvent</th>
<th>T_1</th>
<th>T_2</th>
<th>Medium of amine</th>
<th>Mode of addition</th>
<th>t_1 delay [min]</th>
<th>t_2 delay [min]</th>
<th>t_3 [h; min]</th>
<th>GC-MS conversions [%] (isolated yield)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>1.5</td>
<td>1.5</td>
<td>0.1</td>
<td>CH₂Cl₂</td>
<td>-78</td>
<td>25</td>
<td>neat</td>
<td>one portion</td>
<td>0</td>
<td>30</td>
<td>16 h</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.0</td>
<td>1.5</td>
<td>0.1</td>
<td>CH₂Cl₂</td>
<td>-78</td>
<td>25</td>
<td>neat</td>
<td>one portion</td>
<td>0</td>
<td>30</td>
<td>16 h</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.0</td>
<td>1.5</td>
<td>0.1</td>
<td>CH₂Cl₂</td>
<td>-78</td>
<td>25</td>
<td>CH₂Cl₂ sol.</td>
<td>one portion</td>
<td>0</td>
<td>30</td>
<td>16 h</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.0</td>
<td>1.5</td>
<td>0.1</td>
<td>CH₂Cl₂</td>
<td>-78</td>
<td>25</td>
<td>CH₂Cl₂ sol.</td>
<td>one portion</td>
<td>0</td>
<td>30</td>
<td>16 h</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>1.5</td>
<td>1.5</td>
<td>0.1</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>neat</td>
<td>one portion</td>
<td>0</td>
<td>30</td>
<td>60</td>
<td>51</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>1.5</td>
<td>1.0</td>
<td>0.1</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>neat</td>
<td>one portion</td>
<td>0</td>
<td>30</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>1.5</td>
<td>1.5</td>
<td>CH$_2$Cl$_2$</td>
<td>25</td>
<td>25</td>
<td>CH$_2$Cl$_2$ sol. syringe pump</td>
<td>5</td>
<td>0</td>
<td>30</td>
<td>68</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>0.05</td>
<td>1.5</td>
<td>1.5</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>MeCN sol. syringe pump</td>
<td>5</td>
<td>0</td>
<td>30</td>
<td>20</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>CH$_2$Cl$_2$</td>
<td>25</td>
<td>25</td>
<td>CH$_2$Cl$_2$ sol. one portion</td>
<td>0</td>
<td>5</td>
<td>30</td>
<td>53</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>MeCN sol. one portion</td>
<td>0</td>
<td>5</td>
<td>30</td>
<td>16</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>MeCN sol. one portion</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>16</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>MeCN sol. one portion</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>13</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>MeCN sol. syringe pump</td>
<td>10</td>
<td>5</td>
<td>30</td>
<td>0</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>25</td>
<td>25</td>
<td>MeCN sol. one portion</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>10</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>0</td>
<td>0</td>
<td>MeCN sol. one portion</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>-20</td>
<td>-20</td>
<td>MeCN sol. one portion</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>4</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0.05</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>-20</td>
<td>-20</td>
<td>MeCN sol. syringe pump</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>3</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0.15</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>-20</td>
<td>-20</td>
<td>MeCN sol. one portion</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>11</td>
<td>82 (59)</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0.15</td>
<td>0.0</td>
<td>2.5</td>
<td>MeCN</td>
<td>-20</td>
<td>-20</td>
<td>MeCN sol. syringe pump</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td>0</td>
<td>96 (76)</td>
<td>0</td>
</tr>
</tbody>
</table>
Study of reaction mechanism by 19F-NMR spectroscopy

A 5 mm O.D. NMR tube was charged with (4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate (23.3 mg, 0.05 mmol) acetonitrile-d$_3$ (500 µL) and sealed with a hollow cap. An LDPE tube was filled with five layers of substances in a following sequence: acetonitrile (100 µL), air (100 µL), solution of N-methyl-1-(naphthalen-1-yl)methanamine (8.56 mg, 0.05 mmol, 1.00 equiv in 100 µL MeCN), air (100 µL) and acetonitrile (100 µL), then was placed in the NMR tube. These substances were added in one portion to the reaction mixture at t=0 second. Recording of 19F-NMR spectra (proton decoupled, No. dummy scan= 0, No. scan= 1) was started at t=−60 seconds and 15 seconds time intervals were applied between experiments.

Supplementary Figure 8: Reaction scheme and monitoring of homodiamination reaction by 19F-NMR-spectroscopy, in the presence of one equivalent amine
Study of the first stage of reaction conditions II by 19F-NMR spectroscopy

An 8 mL test tube was charged with stirring bar, (4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate (23.3 mg, 0.05 mmol), acetonitrile-d_3 (500 µL) and cooled to -20°C. To the stirred mixture, solution of N-methyl-1-(naphthalen-1-yl)methanamine (8.56 mg, 0.05 mmol, 1.00 equiv, in 500 µL acetonitrile-d_3) was added via syringe over 30 minutes. After completion of addition, reaction mixture was stirred for 15 minutes at the same temperature, then the complete reaction mixture was transferred to a 0.5 mm O.D. NMR tube at room temperature. 19F-NMR spectra was recorded within 10 minutes.

Supplementary Figure 9: Reaction scheme of the first stage of reaction conditions II and study by 19F-NMR spectroscopy

![Reaction scheme](image)

19F-NMR spectra of (4-fluorophenyl)(3,3,3-trifluoroprop-1-en-2-yl)iodonium trifluoromethanesulfonate

19F-NMR spectra of the reaction mixture of homodiamination

-69.58 ppm

56
Generation of intermediate X by independent route

A 0.5 mm O.D. NMR tube was charged with 1-(naphthalen-1-ylmethyl)-2-(trifluoromethyl)aziridine (6) (18 mg, 0.72 mmol), sodium carbonate (38 mg, 0.358 mmol, 5 equiv) and acetonitrile-d_3 (500 µL). The mixture was treated with methyl triflate (20 µL, 0.179 mmol, 2.5 equiv) at room temperature and recording of 19F-NMR spectra was started immediately. After 2.5 hours, complete consumption of 1-(naphthalen-1-ylmethyl)-2-(trifluoromethyl)aziridine was observed.

Supplementary Figure 10: Generation of intermediate X from trifluoromethyl aziridine 6 and its reaction with excess amine

Addition of N-methyl-1-(naphthalen-1-yl)methanamine (49 mg, 0.286 mmol, 4.0 equiv) led to the formation of corresponding diamine. Also, this result was confirmed by GC-MS spectra of the mixture.
Synthesis of heterofunctionalized diamines

General procedure A
A 30 mL screwed cap vial was charged with rare-earth magnetic stirring bar, 1 (1 equiv) and acetonitrile (10 mL/mmol), then the vial was sealed with Teflon septa and screw cap. The stirred reaction mixture was cooled to -20 °C (bath temp= -23 °C) and solution of first amine (1 equiv, 0.1 M in acetonitrile) was added dropwise (0.3 mmol/h) by syringe pump, then the stirring was continued for 10 mins/0.1 mmol to obtain the solution of aziridinium intermediate. After that second amine or other nucleophile (2.5 equiv) was added in one portion and the mixture was allowed to warm room temperature over 16 hours. Reaction mixture was concentrated onto Celite under reduced pressure and the obtained residue was purified by flash column chromatography. Gradient elution was performed by using either hexanes:ethyl acetate or hexanes:diisopropyl ether or dichloromethane:isopropanol eluent system, according to TLC eluents.

General procedure B
Aziridinium intermediate solution was prepared according to general procedure A. A separate, oven dried vial was charged with stirring bar, appropriate heterocycle (2.6 equiv) and sealed with Teflon septa and screw cap. Vial was evacuated and backfilled with argon (repeated three times), then THF (3.2 mL/mmol heterocycle) was added under argon atmosphere. The stirred mixture was cooled to -78°C and solution of LiHMDS (2.5 equiv, 1 M in THF) was added dropwise. After 1 hour, HMPA (1 equiv) was added in one portion and stirring was continued at -78°C for 10 minutes. To the solution of deprotonated heterocycle, solution of aziridinium intermediate was added at -78°C, then allowed to warm room temperature over 16 hours. Purification was carried out according to general procedure A.

General procedure C
Aziridinium intermediate solution was prepared according to general procedure A. A separate, oven dried vial was charged with stirring bar, appropriate nucleophile (2.5 equiv) and sealed with Teflon septa and screw cap. Vial was evacuated and backfilled with argon (repeated three times), then THF (3.2 mL/mmol nucleophile) was added under argon atmosphere. To the stirred mixture, NaH (2.5 equiv, 60 w% in oil) was added in one portion under argon atmosphere at room temperature and stirring was continued for 1 hour. After that, solution of aziridinium intermediate was added and the mixture was stirred at room temperature for 16 hours. Purification was carried out according to general procedure A.
General procedure D

A 30 mL screwed cap vial was charged with rare-earth magnetic stirring bar, 1 (1 equiv) and THF (10 mL/mmol), then the vial was sealed with Teflon septa and screwed cap. The stirred reaction mixture was cooled to -55 °C (bath temp= -58 °C) and solution of N-methyl-1-(naphthalen-1-yl)methanamine (1 equiv, 0.1 M in THF) was added dropwise (0.3 mmol/h) by syringe pump, then the stirring was continued for 10 mins/0.1 mmol to obtain the solution of aziridinium intermediate. A separate, oven dried vial was charged with stirring bar, appropriate heterocycle (1.1 equiv) and sealed with Teflon septa and screw cap. Vial was evacuated and backfilled with argon (repeated three times), then THF (3.2 mL/mmol heterocycle) was added under argon atmosphere. The stirred mixture was cooled to -78°C and solution of sBuLi (1.15 equiv, 1.6 M in hexanes) was added dropwise. After 1 hour, solution of aziridinium intermediate was added at -78°C, then allowed to warm room temperature over 16 hours. Purification was carried out according to *general procedure A*.

Synthesis of compound 44

3,3,3-trifluoro-N1-hexyl-N2-methyl-N2-(naphthalen-1-ylmethyl)propane-1,2-diamine

Compound 44 was prepared according to *general procedure A* from 1 (93.2 mg, 0.2 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (34.2 mg, 0.2 mmol, 1 equiv) and hexylamine (66 µL, 0.5 mmol, 2.5 equiv) to afford a pale yellow oil (41.3 mg, 0.113 mmol, 56% yield). **R**r = 0.48 (hexanes:ethyl acetate= 7:3). **LRMS** (EI, 70 eV): m/z (%): 366(1), 253(3), 252(2), 234(8), 233(49), 232(2), 212(4), 202(4), 197(4), 194(4), 190(2), 182(2), 170(2), 168(2), 142(13), 141(100), 140(2), 139(6), 116(2), 115(25), 114(63), 57(2), 56(2), 55(2). **1H NMR** (250 MHz, Chloroform-d) δ 8.19 – 8.06 (m, 1H), 7.94 – 7.69 (m, 2H), 7.61 – 7.44 (m, 2H), 7.50 – 7.35 (m, 2H), 4.36 (d, J = 13.0 Hz, 1H), 4.27 (d, J = 13.2 Hz, 1H), 3.47 (dd, J = 8.6, 3.5 Hz, 1H), 2.87 (dd, J = 12.7, 10.6 Hz, 1H), 2.64 (dd, J = 12.7, 3.4 Hz, 1H), 2.49 (q, J = 2.0 Hz, 3H), 2.46 – 1.88 (m, 3H), 1.39 – 0.92 (m, 8H), 0.87 (t, J = 6.9 Hz, 3H). **19F NMR** (235 MHz, Chloroform-d) δ -66.63. **13C NMR** (63 MHz, Chloroform-d) δ 134.2, 134.0, 132.4, 128.9, 128.7, 127.7 (q, J = 292.0 Hz), 126.2, 125.9, 125.3, 124.4, 60.9 (q, J = 24.4 Hz), 58.4, 49.3, 45.2 (q, J = 2.0 Hz), 35.9, 31.8, 29.8, 27.0, 22.7, 14.2. **IR** (ATR, cm⁻¹) 3047, 2955, 2928, 2856, 2840, 2826, 1510, 1463, 1375, 1255, 1157, 1103, 1052, 1019, 907, 862, 790, 774, 730, 706, 644, 605, 543, 519, 503, 420. **HRMS** m/z [M+H]^+ calculated for C21H30N2F3+: 367.2361, found: 367.2359.
Synthesis of compound 45

1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-(pyrrolidin-1-yl)propan-2-amine

Compound 45 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and pyrrolidine (63 µL, 0.75 mmol, 2.5 equiv) to afford an off white solid (76.9 mg, 0.229 mmol, 76% yield). Rf = 0.60 (hexanes:ethyl acetate = 7:3). M.p. = 45-47 °C.

LRMS (EI, 70 eV): m/z (%): 336(1), 168(1), 142(4), 141(30), 140(1), 139(4), 116(1), 115(14), 84(100), 82(1), 70(1), 56(2), 55(5). 1H NMR (300 MHz, Chloroform-d) δ 8.33 (d, J = 7.2 Hz, 1H), 7.86 (dd, J = 7.0, 2.3 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 4.40 (d, J = 13.4 Hz, 1H), 4.31 (d, J = 13.4 Hz, 1H), 3.50 (pd, J = 8.8, 3.9 Hz, 1H), 3.02 (dd, J = 13.1, 9.3 Hz, 1H), 2.65 (dd, J = 13.1, 3.9 Hz, 1H), 2.56 – 2.39 (m, 7H), 1.80 – 1.66 (m, 4H). 19F NMR (235 MHz, Chloroform-d) δ -67.8. 13C NMR (75 MHz, Chloroform-d) δ 134.5, 134.0, 132.5, 128.5, 128.2, 127.6, 127.4 (q, J = 291.7 Hz), 125.8, 125.8, 125.3, 124.9, 62.7 (q, J = 24.1 Hz), 58.3, 54.4, 52.3, 36.8, 23.6. IR (ATR, cm$^{-1}$) 3091, 3046, 2955, 2911, 2874, 2816, 2781, 2698, 1597, 1509, 1460, 1391, 1354, 1312, 1252, 1202, 1170, 1149, 1119, 1097, 1071, 1051, 1031, 946, 883, 845, 791, 774, 709, 622, 559, 542, 520, 454, 414. HRMS m/z [M+H]$^+$ calculated for C$_{19}$H$_{24}$N$_2$F$_3$+: 337.1892, found: 337.1895.

Synthesis of compound 46

1,1,1-trifluoro-N-methyl-3-(2-methylpiperidin-1-yl)-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 46 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and 2-methylpiperidine (88 µL, 0.75 mmol, 2.5 equiv) to afford a pale yellow oil (73.5 mg, 0.201 mmol, 67% yield). Rf = 0.33 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 142(2), 141(18), 139(2), 116(1), 115(5), 115(1), 113(8), 112(100), 110(2), 96(1), 84(1), 83(1), 70(1), 69(1), 56(1), 55(4). 1H NMR (250 MHz, Chloroform-d) δ 8.32 (dd, J = 20.1, 7.6 Hz, 1H), 7.85 (dd, J = 16.0, 8.2 Hz, 2H), 7.63 – 7.36 (m, 4H), 4.51 – 4.23 (m, 2H), 3.47 (dq, J = 12.1, 4.9, 3.5 Hz, 1H), 3.13 (dd, J = 13.8, 9.4 Hz, 0H), 2.76 (dt, J = 38.9, 14.3, 5.9 Hz, 3H), 2.55 – 2.45 (m, 3H), 2.41 – 1.99 (m, 2H), 1.57 (d, J = 11.6 Hz, 2H), 1.51 – 1.40 (m, 2H), 1.34 – 1.13 (m, 2H), 1.02 (t, J = 5.9 Hz, 3H). 19F NMR (235 MHz, Chloroform-d) δ -67.46. 13C NMR (63 MHz, Chloroform-d) δ 134.6, 134.5, 134.0, 132.6, 128.5, 128.2, 127.7 (q, J = 291.6, 291.1 Hz), 127.5, 125.9, 125.7, 125.3, 125.2, 125.2, 124.9, 62.2 (q, J = 23.4 Hz), 61.0 (q, J = 23.4 Hz), 58.7, 58.4, 56.5, 56.2, 52.8, 52.2, 51.5,
Synthesis of compound 47

3,3,3-trifluoro-N\textsubscript{1},N\textsubscript{1}-diisopropyl-N\textsubscript{2}-methyl-N\textsubscript{2}-(naphthalen-1-ylmethyl)propane-1,2-diamine

Compound 47 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl) methanamine (51.4 mg, 0.3 mmol, 1 equiv) and diisopropylamine (105 µL, 0.75 mmol, 2.5 equiv) to afford a pale yellow oil (59.3 mg, 0.162 mmol, 54% yield). \(R_f = 0.65 \) (hexanes:ethyl acetate=10:1). M.p. = 43-46 °C. LRMS (EI, 70 eV): m/z (%): 209(1), 170(1), 168(1), 167(1), 153(1), 152(1), 142(4), 141(35), 140(1), 139(3), 138(1), 116(1), 115(21), 114(100), 112(1), 89(1), 84(1), 73(1), 72(13), 71(1), 70(1), 70(1), 56(2).

\(^1\text{H NMR} \) (250 MHz, Chloroform-\(d \)) \(\delta \) 8.32 (d, \(J = 8.6 \) Hz, 1H), 7.97 – 7.76 (m, 2H), 7.64 – 7.38 (m, 4H), 4.51 – 4.27 (m, 2H), 3.48 – 3.24 (m, 1H), 2.94 (hept, \(J = 6.6 \) Hz, 2H), 2.78 (d, \(J = 5.8 \) Hz, 2H), 2.50 (s, 3H), 0.96 (s, 6H), 0.93 (s, 6H). \(^{19}\text{F NMR} \) (235 MHz, Chloroform-\(d \)) \(\delta -66.27 \). \(^{13}\text{C NMR} \) (63 MHz, Chloroform-\(d \)) \(\delta \) 134.7, 134.0, 132.6, 130.5, 128.5, 128.1, 127.4, 125.8, 125.7, 125.3, 125.1, 63.6 (q, \(J = 22.0 \) Hz), 59.1, 48.0, 42.7, 36.4, 20.9, 20.6. \(\text{IR (ATR, cm}^{-1}\text{)} \) 3094, 3050, 2965, 2939, 2927, 2883, 2856, 2817, 2800, 2732, 1598, 1510, 1459, 1390, 1377, 1361, 1309, 1306, 1290, 1249, 1209, 1160, 1127, 1096, 1052, 1042, 1018, 966, 941, 888, 855, 837, 811, 793, 773, 695, 603, 564, 532, 519, 505, 414. HRMS m/z [M+H]\(^+\) calculated for C\textsubscript{21}H\textsubscript{30}N\textsubscript{2}F\textsubscript{3}: 367.2361, found: 367.2355.

Synthesis of compound 48

\(N^1\)-(adamantan-1-yl)-3,3,3-trifluoro-N\textsubscript{2}-methyl-N\textsubscript{2}-(naphthalen-1-ylmethyl)propane-1,2-diamine

Compound 48 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl) methanamine (51.4 mg, 0.3 mmol, 1 equiv) and 1-adamantylamine (47.6 mg, 0.315 mmol, 1.0 equiv) to afford a pale yellow oil (90.1 mg, 0.216 mmol, 72% yield). \(R_f = 0.60 \) (hexanes:ethyl acetate=7:3). LRMS (EI, 70 eV): m/z (%): 417(1), 416(1), 415(1), 355(1), 287(2), 233(9), 233(5), 165(11), 164(82), 141(39), 141(14), 136(12), 135(100), 115(7), 93(7), 79(12). \(^1\text{H NMR} \) (250 MHz, Chloroform-\(d \)) \(\delta \) 8.15 (d, \(J = 8.2 \) Hz, 1H), 7.94 – 7.72 (m, 2H), 7.64 – 7.34 (m, 4H), 4.32 (s, 2H), 3.59 (bs, \(J = 9.2 \) Hz, 0H), 3.49 (ddd, \(J = 11.2 \), 8.4, 3.3
Hz, 2H), 2.90 (t, J = 11.4 Hz, 1H), 2.71 (dd, J = 11.9, 3.5 Hz, 1H), 2.45 (s, 3H), 2.02 – 1.89 (m, 3H), 1.66 – 1.41 (m, 6H), 1.34 (d, J = 17.1 Hz, 6H). 19F NMR (235 MHz, Chloroform-d) δ -66.63. 13C NMR (63 MHz, Chloroform-d) δ 134.3, 133.8, 132.4, 128.9, 128.7, 128.2, 127.1 (q, J = 292.4 Hz), 126.5, 125.9, 125.3, 124.6, 62.6 (q, J = 24.8 Hz), 58.6, 51.1, 41.8, 36.4, 36.1 – 35.6 (m), 35.1, 29.4.

IR (ATR, cm⁻¹) 3047, 2904, 2849, 2819, 1510, 1482, 1452, 1368, 1357, 1289, 1256, 1236, 1197, 1151, 1119, 1103, 1079, 1052, 1027, 907, 852, 791, 774, 729, 702, 638, 563, 539, 518, 478, 441, 418. HRMS m/z [M+H]$^+$ calculated for C$_{25}$H$_{32}$N$_2$F$_3$: 417.2518, found: 417.2518.

Synthesis of compound 49

N1-ethyl-3,3,3-trifluoro-N2-methyl-N3-(naphthalen-1-ylmethyl)-N1-phenylpropane-1,2-diamine

Compound 49 was prepared according to general procedure A with I (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and N-ethylaniline (96 µL, 0.75 mmol, 2.5 equiv) to afford a pale yellow oil (92.3 mg, 0.239 mmol, 80% yield). R_f = 0.70 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 387(1), 386(6), 142(3), 141(24), 139(3), 135(16), 134(100), 115(11), 107(2), 106(24), 105(2), 104(4), 91(2), 79(4), 78(2), 77(8). 1H NMR (250 MHz, Chloroform-d) δ 8.13 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.82 (dd, J = 6.0, 3.3 Hz, 1H), 7.62 – 7.34 (m, 4H), 7.27 – 7.11 (m, 2H), 6.75 (t, J = 7.2 Hz, 1H), 6.57 (d, J = 8.3 Hz, 2H), 4.35 (s, 2H), 3.82 – 3.67 (m, 1H), 3.68 (dd, J = 15.7, 4.2 Hz, 1H), 3.52 (dd, J = 15.3, 8.0 Hz, 1H), 3.48 – 3.11 (m, 2H), 2.60 (s, 3H), 1.07 (t, J = 7.0 Hz, 3H). 19F NMR (235 MHz, Chloroform-d) δ -66.22. 13C NMR (63 MHz, Chloroform-d) δ 146.8, 134.0, 133.9, 132.4, 129.4, 128.5 (d, J = 1.3 Hz), 127.8, 127.7 (q, J = 293.6 Hz), 126.0, 125.7, 125.1, 124.9, 116.2, 112.1, 60.5 (q, J = 22.9 Hz), 59.6, 47.7, 46.0, 35.9, 11.5. IR (ATR, cm⁻¹) 3095, 3060, 3043, 2971, 2932, 2897, 2861, 2810, 1598, 1504, 1463, 1374, 1353, 1242, 1211, 1192, 1153, 1126, 1100, 1061, 1039, 1022, 973, 907, 854, 790, 774, 744, 691, 649, 574, 547, 506, 445, 431, 417. HRMS m/z [M+H]$^+$ calculated for C$_{25}$H$_{26}$N$_2$F$_3$: 387.2048, found: 387.2049.
Synthesis of compound 50
3,3,3-trifluoro-N\(^1\),N\(^2\)-dimethyl-N\(^3\)-(naphthalen-1-ylmethyl)-N\(^4\)-(2-(trifluoromethyl)phenyl)propane-1,2-diamine

Compound 50 was prepared according to general procedure A with 1 (93.2 mg, 0.2 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (34.2 mg, 0.2 mmol, 1 equiv), 2-trifluoromethyl-N-methylaniline (91.2 mg, 0.5 mmol, 2.5 equiv) and 2,6-di-tert-butylpyridine (116 µL, 0.5 mmol, 2.5 equiv) to afford a colorless oil (39.3 mg, 0.089 mmol, 45% yield). \(R_f=0.65\) (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 189(10), 188(100), 173(2), 172(3), 168(1), 159(1), 154(1), 145(2), 142(3), 141(20), 140(1), 139(3), 128(1), 127(4), 126(1), 118(1), 116(1), 115(8), 109(1), 91(2), 77(1). \(^1\)H NMR (250 MHz, Chloroform-\(d\)) 8.14 (d, \(J=7.2\) Hz, 1H), 7.84 – 7.68 (m, 2H), 7.56 (d, \(J=7.8\) Hz, 1H), 7.52 – 7.28 (m, 5H), 7.14 (dd, \(J=14.2, 7.3\) Hz, 2H), 4.27 (s, 2H), 3.51 (ddq, \(J=12.7, 8.4, 4.3\) Hz, 1H), 3.29 (dd, \(J=13.6, 8.1\) Hz, 1H), 3.16 (dd, \(J=13.6, 4.2\) Hz, 1H), 2.54 (s, 3H), 2.34 (s, 3H). \(^{19}\)F NMR (235 MHz, Chloroform-\(d\)) \(\delta\) -59.64 (s, 3F), -67.66 (s, 3F). \(^{13}\)C NMR (63 MHz, Chloroform-\(d\)) \(\delta\) 153.1, 134.0, 133.0, 132.4, 129.6, 128.6, 128.3, 127.7 (d, \(J=5.5\) Hz), 127.5, 127.5, 127.1, 126.5 (d, \(J=20.7\) Hz), 126.1, 125.8, 125.4, 124.7, 124.7, 124.6, 122.0, 62.7 (q, \(J=24.0\) Hz), 58.2, 53.8, 45.5, 36.4. IR (ATR, cm\(^{-1}\)) 3067, 3048, 2959, 2901, 2861, 2810, 1602, 1584, 1510, 1496, 1453, 1431, 1392, 1314, 1252, 1105, 1052, 1035, 980, 934, 854, 791, 763, 734, 703, 647, 600, 564, 417. HRMS m/z [M+H]+ calculated for C\(_{21}\)H\(_{20}\)N\(_2\)F\(_6\)+: 441.1760, found: 441.1775.

Synthesis of compound 51
N-(4-methoxybenzyl)-N-(3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl)-L-leucinate

Compound 51 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and methyl (4-methoxybenzyl)-L-leucinate (199 mg, 0.75 mmol, 2.5 equiv) to afford a pale yellow oil (118 mg, 0.223 mmol, 74% yield). \(R_f=0.35\) (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 471(2), 279(9), 278(48), 142(3), 141(25), 122(11), 121(100), 115(4), 91(2), 77(2). \(^1\)H NMR (250 MHz, Chloroform-\(d\)) 8.32 – 8.08 (m, 1H), 7.99 – 7.72 (m, 2H), 7.64 – 7.36 (m, 4H), 7.08 (d, \(J=8.1\) Hz, 1H), 7.04 (d, \(J=8.3\) Hz, 1H), 6.79 (d, \(J=8.4\) Hz, 1H), 6.74 (d, \(J=8.4\) Hz, 1H), 4.44 – 4.19 (m, 2H), 3.86 – 3.61 (m, 7H), 3.55 – 3.27 (m, 3H), 3.23 – 3.06 (m, 1H), 3.03 – 2.68 (m, 1H), 2.54 – 2.33 (m, 3H), 1.75 – 1.41 (m, 3H), 0.91 – 0.60 (m, 6H). \(^{19}\)F
NMR (235 MHz, Chloroform-\(d\)) \(\delta\) -66.1, -66.6 (d. r.= 50:50). \(^{13}\)C NMR (63 MHz, Chloroform-\(d\)) \(\delta\) 173.8, 173.7, 158.8, 134.3, 134.1, 134.0, 132.4, 132.3, 131.0, 130.8, 130.3, 130.2, 128.6, 128.6, 128.2, 128.1, 127.3, 126.0, 125.9, 125.7, 125.3, 124.6, 124.3, 113.6, 63.8, 63.5, 63.3, 62.9, 62.5, 60.6, 60.5, 58.2, 58.1, 56.0, 55.8, 55.2, 55.2, 51.1, 48.5, 48.1, 39.3, 38.6, 36.9, 36.3, 30.9, 24.7, 24.6, 22.8, 22.7, 22.3, 22.2. IR (ATR, cm\(^{-1}\)) 3039, 2996, 2955, 2929, 2908, 2868, 2837, 1731, 1612, 1585, 1510, 1463, 1367, 1302, 1245, 1156, 1103, 1054, 1035, 984, 909, 824, 791, 774, 732, 706, 519, 417. HRMS m/z [M+H]\(^+\) calculated for C\(_{30}\)H\(_{38}\)N\(_2\)O\(_3\)F\(_3\): 531.2835, found: 531.2838.

Synthesis of compound 52
3-(4-bromo-1\(H\)-pyrazol-1-yl)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 52 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and 4-bromopyrazole (112 mg, 0.75 mmol, 2.5 equiv) and sodium hydride (30 mg, 60 w% in oil, 0.75 mmol, 2.5 equiv) to afford a white solid (94.2 mg, 0.229 mmol, 76% yield). \(R_f\) = 0.35 (hexanes:ethyl acetate= 10:1). M.p. = 131-133 °C. LRMS (EI, 70 eV): m/z (%): 270(1), 252(5), 234(2), 196(2), 171(14), 170(100), 168(4), 142(23), 141(97), 141(87), 139(10), 115(31). \(^1\)H NMR (250 MHz, Chloroform-\(d\)) 7.75 – 7.59 (m, 2H), 7.44 (d, \(J = 8.2\) Hz, 1H), 7.39 – 7.16 (m, 4H), 7.11 (d, \(J = 7.1\) Hz, 1H), 7.03 (s, 1H), 4.24 – 3.98 (m, 4H), 3.80 (ddp, \(J = 12.9, 8.6, 4.6\) Hz, 1H), 2.53 – 2.17 (m, 3H). \(^19\)F NMR (235 MHz, Chloroform-\(d\)) \(\delta\) -67.00. \(^{13}\)C NMR (63 MHz, Chloroform-\(d\)) \(\delta\) 140.4, 133.9, 133.1, 132.1, 130.6, 128.7, 128.4, 127.7, 126.6 (q, \(J = 292.7\) Hz), 126.3, 125.8, 125.1, 123.9, 93.2, 63.1 (q, \(J = 25.0\) Hz), 58.7, 48.7 (q, \(J = 2.2\) Hz), 35.2. IR (ATR, cm\(^{-1}\)) 3138, 3094, 3066, 3033, 2997, 2963, 2929, 2880, 2861, 2806, 1507, 1473, 1449, 1382, 1295, 1252, 1224, 1192, 1164, 1156, 1106, 1068, 1019, 950, 866, 846, 791, 734, 720, 692, 645, 610, 580, 448, 420. HRMS m/z [M+H]\(^+\) calculated for C\(_{18}\)H\(_{18}\)N\(_3\)F\(_3\)Br\(^+\): 412.0636, found: 412.0640.
Synthesis of compound 53

2-(3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl)isoindoline-1,3-dione

Compound 53 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and potassium phthalimide (139 mg, 0.75 mmol, 2.5 equiv) to afford a white solid (97.0 mg, 0.235 mmol, 78% yield). \(R_f = 0.70 \) (hexanes:ethyl acetate= 7:3). M.p.= 112-114 °C. LRMS (EI, 70 eV): \(m/z \) (%): 412(1), 271(3), 252(9), 171(3), 170(21), 160(4), 160(2), 154(2), 142(13), 141(100), 139(4), 115(14), 104(2), 77(3), 76(2). \(^1\)H NMR (250 MHz, Chloroform-\(d_2 \)) 7.59 – 7.32 (m, 7H), 7.22 – 7.06 (m, 2H), 6.76 (t, \(J = 7.5 \) Hz, 1H), 6.52 (t, \(J = 7.6 \) Hz, 1H), 4.17 – 3.85 (m, 3H), 3.60 (dqd, \(J = 11.4, 8.2, 3.3 \) Hz, 1H), 3.33 (dd, \(J = 13.9, 3.4 \) Hz, 1H), 2.57 (s, 3H). \(^{19}\)F NMR (235 MHz, Chloroform-\(d_2 \)) \(\delta \) -66.58. \(^{13}\)C NMR (63 MHz, Chloroform-\(d_2 \)) \(\delta \) 167.3, 133.7, 133.5, 133.2, 131.9, 131.8, 128.1, 126.8 (q, \(J = 293.3 \) Hz), 132.2, 128.7, 128.4, 128.1, 126.8 (q, \(J = 24.5 \) Hz), 36.1, 33.9 (q, \(J = 2.6 \) Hz). IR (ATR, cm\(^{-1}\)) 3048, 3005, 2951, 2895, 2860, 2826, 2746, 1771, 1707, 1616, 1598, 1510, 1466, 1428, 1405, 1377, 1334, 1252, 1226, 1192, 1161, 1103, 1055, 1018, 970, 953, 875, 801, 786, 770, 726, 713, 702, 614, 529, 509, 449, 432. HRMS m/z [M+H]+ calculated for \(C_{23}H_{20}N_2O_2F_3 \): 413.1477, found: 413.1469.

Synthesis of compound 54

1,1,1-trifluoro-3-(1H-indol-1-yl)-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 54 was prepared according to general procedure B from 1 (140 mg, 0.3 mmol), indole (91.4 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 μL, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 μL, 0.75 mmol, 2.5 equiv) to afford a pale yellow oil (86.7 mg, 0.227 mmol, 76% yield). \(R_f = 0.60 \) (hexanes:ethyl acetate= 1:1). LRMS (EI, 70 eV): \(m/z \) (%): 383(3), 382(12), 252(11), 142(12), 141(100), 139(4), 131(4), 130(30), 116(3), 115(14), 103(5), 89(3), 77(5). \(^1\)H NMR (300 MHz, Chloroform-\(d_2 \)) 7.89 (d, \(J = 8.2 \) Hz, 1H), 7.81 (d, \(J = 8.3 \) Hz, 1H), 7.80 – 7.74 (m, 1H), 7.72 (d, \(J = 7.9 \) Hz, 1H), 7.52 (t, \(J = 7.5 \) Hz, 1H), 7.37 – 7.29 (m, 2H), 7.25 – 7.20 (m, 2H), 7.18 (d, \(J = 7.2 \) Hz, 1H), 7.14 – 7.05 (m, 1H), 7.01 (d, \(J = 3.2 \) Hz, 1H), 6.53 (d, \(J = 3.2 \) Hz, 1H), 4.49 (dd, \(J = 15.0, 4.5 \) Hz, 1H), 4.38 (dd, \(J = 15.0, 8.6 \) Hz, 1H), 4.29 (d, \(J = 13.5 \) Hz, 1H), 4.23 (d, \(J = 13.3 \) Hz, 1H), 3.85 (pd, \(J = 8.4, 4.5 \) Hz, 1H), 2.68 (s, 3H). \(^{19}\)F NMR (282 MHz, Chloroform-\(d_2 \)) \(\delta \) -66.82 (d, \(J = 8.4 \) Hz). \(^{13}\)C NMR (75 MHz, Chloroform-\(d_2 \)) \(\delta \) 135.8, 133.8, 133.1, 132.1, 129.0, 128.9, 128.7, 128.4,
128.4, 127.6, 126.1, 125.7, 125.1, 124.1, 121.9, 121.3, 119.7, 108.9, 101.8, 62.4 (q, \(J = 24.4 \) Hz), 58.8, 43.5 (q, \(J = 2.4 \) Hz), 35.7. \(\text{IR (ATR, cm}^{-1}\) 3050, 2983, 2944, 2860, 2810, 1511, 1479, 1463, 1377, 1314, 1248, 1174, 1158, 1069, 1052, 1014, 964, 907, 864, 791, 776, 763, 730, 696, 648, 584, 424. \(\text{HRMS m/z [M+H]}^+ \) calculated for \(\text{C}_{23}\text{H}_{22}\text{N}_{2}\text{F}_{3}^+ \): 383.1730, found: 383.1734.

Synthesis of compound 55

1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-(1H-pyrrolo[2,3-b]pyridin-1-yl)propan-2-amine

Compound 55 was prepared according to general procedure B from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), 7-azaindole (92.1 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 \(\mu \)L, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 \(\mu \)L, 0.75 mmol, 2.5 equiv) to afford a pale yellow solid (55.7 mg, 0.145 mmol, 48% yield). \(R_f = 0.54 \) (hexanes:ethyl acetate= 1:1). M.p. = 75-78 °C. LRMS (EI, 70 eV): m/z (%): 383(4), 265(3), 242(11), 222(11), 170(29), 142(12), 141(100), 139(6), 131(23), 119(11), 118(24), 115(20), 104(4), 104(3), 78(3), 77(4). \(^1H \text{NMR (300 MHz, Chloroform-}d\) 8.27 (d, \(J = 4.7 \) Hz, 1H), 7.94 – 7.86 (m, 1H), 7.76 (d, \(J = 8.3 \) Hz, 1H), 7.69 (d, \(J = 8.3 \) Hz, 1H), 7.48 (d, \(J = 8.6 \) Hz, 1H), 7.38 (t, \(J = 7.6 \) Hz, 1H), 7.31 – 7.22 (m, 1H), 7.17 – 7.03 (m, 3H), 6.96 (d, \(J = 3.5 \) Hz, 1H), 6.33 (d, \(J = 3.5 \) Hz, 1H), 4.58 (d, \(J = 7.0 \) Hz, 2H), 4.22 (d, \(J = 13.5 \) Hz, 1H), 4.19 – 4.07 (m, 2H), 2.61 (s, 3H). \(^19\text{F NMR (282 MHz, Chloroform-}d\) \(\delta =-66.97 \) (d, \(J = 8.0 \) Hz). \(^{13}\text{C NMR (75 MHz, Chloroform-}d\) \(\delta =147.3, 142.6, 133.7, 133.4, 132.1, 129.0, 128.6, 128.3, 128.2, 127.4, 127.0 \) (q, \(J = 293.4 \) Hz), 125.8, 125.5, 125.0, 123.9, 120.9, 115.9, 100.1, 62.4 (q, \(J = 24.3 \) Hz), 58.5, 41.2, 35.7. \(\text{IR (ATR, cm}^{-1}\) 3053, 2988, 2952, 2884, 2864, 2812, 2249, 1595, 1572, 1510, 1432, 1310, 1249, 1208, 1175, 1157, 1110, 1073, 1054, 1017, 906, 866, 793, 773, 726, 699, 648, 597, 479, 415. \(\text{HRMS m/z [M+H]}^+ \) calculated for \(\text{C}_{22}\text{H}_{21}\text{N}_{2}\text{F}_{3}^+ \): 384.1682, found: 384.1686.
Synthesis of compound 56
3-(1H-benzo[d]imidazol-1-yl)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 56 was prepared according to general procedure B from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), benzimidazole (92.1 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 μL, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 μL, 0.75 mmol, 2.5 equiv) to afford an off-white solid (54.1 mg, 0.141 mmol, 47% yield). Rf = 0.25 (hexanes:ethyl acetate= 1:1). M.p.= 73-76 °C. LRMS (EI, 70 eV): m/z (%): 383(3), 253(3), 252(16), 221(1), 141(100), 142(13), 141(10), 139(3), 131(9), 115(12), 77(5).

1H NMR (250 MHz, Chloroform-d) 7.68 (dt, J = 16.3, 7.0 Hz, 4H), 7.46 (d, J = 8.6 Hz, 1H), 7.37 (ddd, J = 8.2, 6.8, 1.4 Hz, 1H), 7.31 – 7.13 (m, 3H), 7.14 – 6.98 (m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 4.26 (d, J = 7.7 Hz, 1H), 4.23 (d, J = 13.8 Hz, 1H), 4.12 (d, J = 13.0 Hz, 1H), 3.66 (pd, J = 8.3, 5.8 Hz, 1H), 2.66 – 2.56 (m, 4H).

19F NMR (235 MHz, Chloroform-d) δ -66.56.

13C NMR (75 MHz, Chloroform-d) δ 143.5, 143.4, 133.7, 133.1, 132.4, 131.8, 128.7, 128.4, 127.8, 126.7 (q, J = 293.2 Hz), 126.3, 125.9, 124.9, 123.4, 123.1, 122.3, 120.6, 108.7, 60.8 (q, J = 24.7 Hz), 58.5, 41.9 (d, J = 2.2 Hz), 35.8.

IR (ATR, cm⁻¹) 3210, 3056, 2927, 2900, 2867, 2812, 1727, 1616, 1598, 1502, 1459, 1371, 1287, 1251, 1229, 1175, 1153, 1103, 1082, 1038, 1025, 954, 865, 776, 733, 698, 588, 451, 425.

Synthesis of compound 57
1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-(1H-pyrrolo[2,3-b]pyridin-1-yl)propan-2-amine

Compound 57 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and indazole (89.5 mg, 0.75 mmol, 2.5 equiv) to afford a white solid (69.3 mg, 0.181 mmol, 60% yield). Rf = 0.43 (hexanes:ethyl acetate= 1:1). M.p.= 130-132 ºC.

LRMS (EI, 70 eV): m/z (%): 383(1), 327(1), 265(3), 171(5), 170(64), 168(12), 142(13), 141(100), 124(5), 119(9), 118(43), 115(36), 103(5), 89(5), 77(6), 77(4).

1H NMR (300 MHz, Chloroform-d) 7.78 – 7.65 (m, 4H), 7.58 (d, J = 8.4 Hz, 1H), 7.38 (dd, J = 8.8, 6.6 Hz, 1H), 7.31 – 7.23 (m, 1H), 7.22 – 7.18 (m, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.48 (t, J = 7.7 Hz, 1H), 4.69 (dd, J = 13.9, 3.5 Hz, 1H), 4.57 (dd, J = 13.9, 10.2 Hz, 1H), 4.42 – 4.26 (m, 1H), 4.22 (s, 2H), 2.51 (s, 3H). 19F NMR (282 MHz, Chloroform-d) δ -66.87 (d, J = 8.3 Hz).

13C NMR (75 MHz, Chloroform-d) δ 149.1, 133.6, 133.1, 131.9, 128.5, 128.0, 127.7, 126.4, 125.7,
125.6, 124.8, 124.7, 124.0 (q, $J = 289.9$ Hz), 123.7, 121.8, 120.5, 117.4, 64.0 (q, $J = 25.2$ Hz), 59.2, 49.6 (d, $J = 2.7$ Hz), 34.6. IR (ATR, cm$^{-1}$) 3119, 3053, 3009, 3000, 2975, 2952, 2841, 2807, 1628, 1595, 1516, 1509, 1443, 1382, 1365, 1302, 1289, 1259, 1244, 1174, 1127, 1096, 1072, 1052, 1031, 871, 829, 790. HRMS m/z [M+H]$^+$ calculated for C$_{22}$H$_{21}$N$_3$F$_3$: 384.1682, found: 384.1686.

Synthesis of compound 58

3-(1H-benzo[d][1,2,3]triazol-1-yl)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 58 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and 1H-benzotriazole (89.3 mg, 0.75 mmol, 2.5 equiv) to afford a pale yellow oil (68.5 mg, 0.178 mmol, 59% yield). R_f = 0.30 (hexanes:ethyl acetate = 1:1). M.p. = 77-82 °C. LRMS (EI, 70 eV): m/z (%): 384(1), 252(1), 171(3), 170(29), 142(12), 141(100), 139(7), 115(12), 115(7), 77(8), 77(5), 51(3). 1H NMR (300 MHz, Chloroform-d) 7.98 – 7.89 (m, 1H), 7.68 – 7.59 (m, 2H), 7.24 (ddt, $J = 15.1, 12.7, 5.0$ Hz, 5H), 7.03 (d, $J = 6.9$ Hz, 1H), 7.00 – 6.92 (m, 2H), 4.90 (dd, $J = 14.7, 10.3$ Hz, 1H), 4.66 (dd, $J = 14.7, 3.9$ Hz, 1H), 4.17 (d, $J = 12.9$ Hz, 1H), 4.11 (d, $J = 13.3$ Hz, 1H), 4.04 – 3.89 (m, 1H), 2.71 (q, $J = 2.0$ Hz, 3H). 19F NMR (282 MHz, Chloroform-d) δ -66.98 (d, $J = 8.0$ Hz). 13C NMR (75 MHz, Chloroform-d) δ 145.7, 133.5, 132.9, 132.4, 131.7, 128.6, 128.2, 127.7, 127.4, 126.5 (q, $J = 292.6$ Hz), 125.9, 125.6, 124.7, 123.7, 123.3, 120.1, 108.4, 60.8 (q, $J = 25.2$ Hz), 58.3, 44.3, 35.8. IR (ATR, cm$^{-1}$) 3064, 3046, 3002, 2976, 2955, 2900, 2854, 2816, 1510, 1449, 1367, 1313, 1251, 1234, 1157, 1100, 1082, 1054, 1015, 953, 790, 776, 746, 720, 698, 567, 431. HRMS m/z [M+H]$^+$ calculated for C$_{21}$H$_{19}$N$_4$F$_3$: 385.1635, found: 385.1636.
Synthesis of compound 59

1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-(5-phenyl-2H-tetrazol-2-yl)propan-2-amine

Compound 59 was prepared according to general procedure A with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and 5-phenyl-1H-tetrazole (110 mg, 0.75 mmol, 2.5 equiv) to afford a colorless oil (77.6 mg, 0.189 mmol, 63% yield). \(R_f = 0.49 \) (hexanes:ethyl acetate= 1:1). LRMS (EI, 70 eV): m/z (%): 384(5), 383(23), 382(6), 142(13), 141(100), 139(5), 131(10), 115(17), 77(11). \(^1H \) NMR (300 MHz, Chloroform-\(d \)) 7.98 – 7.85 (m, 2H), 7.65 (d, \(J = 8.2 \) Hz, 1H), 7.48 (qd, \(J = 9.5, 8.6, 5.1 \) Hz, 4H), 7.30 (t, \(J = 7.6 \) Hz, 1H), 7.21 (d, \(J = 6.9 \) Hz, 1H), 7.09 (dt, \(J = 6.4, 3.4 \) Hz, 2H), 5.03 (dd, \(J = 14.0, 11.0 \) Hz, 1H), 4.59 (dd, \(J = 14.0, 3.5 \) Hz, 1H), 4.20 (dd, \(J = 13.2, 8.7 \) Hz, 2H), 4.09 (dd, \(J = 16.1, 8.1, 4.2 \) Hz, 1H), 2.67 (q, \(J = 2.0 \) Hz, 3H). \(^19F \) NMR (282 MHz, Chloroform-\(d \)) \(\delta = -66.99 \) (d, \(J = 7.9 \) Hz). \(^13C \) NMR (75 MHz, Chloroform-\(d \)) \(\delta = 165.0, 133.7, 132.4, 132.0, 130.3, 128.9, 128.7, 128.2, 127.9, 127.2, 126.9, 126.2, 125.7, 124.9, 124.1 (q, \(J = 293.0 \) Hz), 61.1 (q, \(J = 25.9 \) Hz), 58.2, 48.8, 35.7. IR (ATR, cm\(^{-1}\)) 3685, 3661, 2988, 2971, 2901, 2847, 2253, 1530, 1510, 1466, 1451, 1375, 1312, 1255, 1171, 1140, 1109, 1073, 1052, 1044, 873, 788, 774, 732, 703, 693, 588, 447, 431, 418. HRMS m/z [M+H]\(^+\) calculated for C\(_{22}\)H\(_{21}\)N\(_4\)F\(_3\): 412.1744, found: 412.1749.

Synthesis of compound 60

1,1,1-trifluoro-3-(4-methoxy-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 60 was prepared according to general procedure B from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), 4-methoxy-7H-pyrrolo[2,3-d]pyrimidine (116 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 μL, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 µL, 0.75 mmol, 2.5 equiv) to afford an beige solid (63.8 mg, 0.154 mmol, 51% yield). \(R_f = 0.35 \) (hexanes:ethyl acetate= 1:1). M.p. = 78-80 °C. LRMS (EI, 70 eV): m/z (%): 414(1), 273(4), 273(3), 253(7), 170(27), 163(3), 162(5), 162(5), 150(10), 149(24), 142(7), 142(5), 141(100), 116(3), 115(26), 93(6), 92(3), 78(3). \(^1H \) NMR (500 MHz, Chloroform-\(d \)) 8.22 (s, 1H), 7.68 (d, \(J = 8.1 \) Hz, 1H), 7.65 (d, \(J = 8.2 \) Hz, 1H), 7.34 (d, \(J = 8.5 \) Hz, 1H), 7.31 (ddd, \(J = 8.0, 6.9, 1.2 \) Hz, 1H), 7.24 (dd, \(J = 8.3, 6.9 \) Hz, 1H), 7.10 (dd, \(J = 6.9, 1.2 \) Hz, 1H), 7.07 (ddd, \(J = 8.3, 6.9, 1.3 \) Hz, 1H), 6.64 (d, \(J = 3.5 \) Hz, 1H), 6.22 (dd, \(J = 3.5, 0.7 \) Hz, 1H), 4.37 (dd, \(J = 14.5, 10.1 \) Hz, 1H), 4.32 (dd, \(J = 14.4, 4.4 \) Hz, 1H), 4.17 (d, \(J = 12.8 \) Hz, 1H), 4.14
(s, 3H), 4.09 (d, J = 13.1 Hz, 1H), 4.01 – 3.90 (m, 1H), 2.63 (q, J = 2.0 Hz, 3H). \(^{19}\)F NMR (282 MHz, Chloroform-\(d\)) \(\delta\) -66.78 (d, J = 8.2 Hz). \(^{13}\)C NMR (75 MHz, Chloroform-\(d\)) \(\delta\) 162.6, 151.5, 150.4, 133.6, 133.0, 132.0, 128.4, 128.1, 127.8, 126.9 (q, J = 293.1 Hz), 126.1, 125.7, 125.4, 124.9, 123.8, 105.5, 98.5, 60.7 (q, J = 24.5 Hz), 58.3, 53.8, 41.4 (q, J = 1.8 Hz), 35.9.

IR (ATR, cm\(^{-1}\)) 3119, 3036, 3002, 2952, 2897, 2856, 2819, 2253, 1595, 1561, 1509, 1475, 1414, 1388, 1357, 1323, 1265, 1248, 1164, 1124, 1103, 1066, 1052, 983, 793, 777, 764, 717, 702, 639, 607, 586, 542, 442, 417. HRMS m/z [M+H]\(^+\) calculated for C\(_{22}\)H\(_{22}\)N\(_4\)F\(_3\): 415.1740, found: 415.1739.

Synthesis of compound 61

1,3-dimethyl-7-(3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl)-3,7-dihydro-1H-purine-2,6-dione

Compound 61 was prepared according to general procedure B from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), methyl theophylline (141 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 \(\mu\)L, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 \(\mu\)L, 0.75 mmol, 2.5 equiv) to afford a white solid (81.0 mg, 0.182 mmol, 60\% yield). \(R_f\) = 0.49 (dichloromethane:isopropanol= 1:1). M.p. = 215-218 °C. LRMS (EI, 70 eV): m/z (%): 355(1), 304(9), 193(4), 170(23), 170(9), 142(11), 141(100), 115(19), 109(4).

\(^1\)H NMR (300 MHz, Chloroform-\(d\)) 7.66 (d, J = 7.6 Hz, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.28 – 7.23 (m, 1H), 7.22 (s, 1H), 7.21 – 7.14 (m, 1H), 4.22 (d, J = 11.5 Hz, 2H), 4.07 (d, J = 13.1 Hz, 1H), 4.03 (s, 1H), 4.02 – 3.95 (m, 1H), 3.34 (s, 3H), 3.05 (s, 3H), 2.78 (q, J = 2.3 Hz, 3H). \(^{19}\)F NMR (282 MHz, Chloroform-\(d\)) \(\delta\) -66.36 (d, J = 6.3 Hz). \(^{13}\)C NMR (75 MHz, Chloroform-\(d\)) \(\delta\) 153.9, 151.0, 148.1, 141.3, 133.5, 132.4, 132.0, 129.1, 128.4, 127.9, 126.7 (d, J = 293.4 Hz), 125.8, 125.2, 125.0, 123.5, 105.9, 57.9, 57.9 (q, J = 24.8 Hz), 43.2, 36.5, 29.6, 27.6. IR (ATR, cm\(^{-1}\)) 3112, 3075, 2951, 2927, 2901, 2860, 2819, 2798, 1697, 1642, 1599, 1548, 1473, 1407, 1378, 1292, 1248, 1231, 1180, 1141, 1109, 1088, 1072, 1028, 970, 871, 784, 770, 759, 749, 702, 621, 590, 492, 417, 397. HRMS m/z [M+H]\(^+\) calculated for C\(_{22}\)H\(_{22}\)N\(_4\)O\(_2\)F\(_3\): 446.1797, found: 446.1797.
Synthesis of compound 62

Nα-(tert-butoxycarbonyl)-1-(3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl)-L-tryptophanate

Compound 62 was prepared according to **general procedure B** from 1 (140 mg, 0.3 mmol), *N*-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), methyl *N*-(((tert-butoxycarbonyl)-L-tryptophanate (115 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 μL, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 μL, 0.75 mmol, 2.5 equiv) to afford a colorless oil (56.8 mg, 0.0973 mmol, 32% yield).

Rf = 0.29 (hexanes:ethyl acetate= 1:1). **LRMS** (El, 70 eV): m/z (%): 489(1), 430(3), 207(5), 193(3), 171(2), 170(27), 170(10), 168(2), 168(2), 165(2), 142(8), 142(5), 141(100), 115(9), 73(2). **1H NMR** (500 MHz, Chloroform-d) - δ 7.78 (dt, *J* = 8.5, 1.6 Hz, 1H), 7.70 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.62 (dd, *J* = 8.7, 3.9 Hz, 1H), 7.50 (td, *J* = 7.8, 7.3, 1.5 Hz, 1H), 7.41 (dddd, *J* = 8.1, 6.8, 2.3, 1.2 Hz, 1H), 7.24 – 7.15 (m, 2H), 7.13 – 7.03 (m, 3H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 6.6 Hz, 1H), 4.98 (d, *J* = 8.3 Hz, 1H), 4.62 – 4.53 (m, 1H), 4.35 – 4.24 (m, 2H), 4.20 (d, *J* = 13.4 Hz, 1H), 4.17 – 4.13 (m, 1H), 3.70 (pt, *J* = 12.1, 7.0, 6.0 Hz, 1H), 3.62 (d, *J* = 6.1 Hz, 3H), 3.24 – 3.08 (m, 2H), 2.63 (dt, *J* = 3.6, 1.9 Hz, 3H), 1.42 (s, 9H). **19F NMR** (282 MHz, Chloroform-d) - δ -66.72 (d, *J* = 8.1 Hz). **13C NMR** (75 MHz, Chloroform-d) - δ 172.8, 155.3, 136.0, 133.9, 132.6, 132.0, 127.9, 126.8 (q, *J* = 292.2 Hz), 126.0, 125.7, 125.1, 123.9, 122.2, 119.6, 108.9, 79.9, 61.6 (d, *J* = 24.3 Hz), 58.6, 58.5, 54.3, 54.1, 52.3, 43.5, 36.2, 28.4. **IR** (ATR, cm⁻¹) - 3431, 3379, 3051, 2976, 2951, 2931, 2861, 1741, 1710, 1614, 1497, 1468, 1439, 1367, 1251, 1161, 1102, 1054, 1017, 861, 793, 776, 739, 428. **HRMS** m/z [M+H]+ calculated for C₃₂H₃₇N₃O₄F₃+: 584.2731, found: 584.2730.

Synthesis of compound 63

1-(3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl)pyridine-2(1H)-thione

Compound 63 was prepared according to **general procedure B** from 1 (140 mg, 0.3 mmol), *N*-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), 2-mercaptopyridine (86.7 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 μL, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 μL, 0.75 mmol, 2.5 equiv) to afford a yellow oil (78.5 mg, 0.209 mmol, 69% yield). **Rf** = 0.59 (hexanes:ethyl acetate= 1:1). **LRMS** (El, 70 eV): m/z (%): 265(8), 235(6), 196(5), 169(6), 168(22), 142(12), 141(100), 139(6), 115(23), 112(7), 111(6), 78(6). **1H NMR** (300 MHz,
Chloroform-\textit{d}) 8.36 (dd, \(J = 5.1, 1.9\) Hz, 1H), 8.26 – 8.19 (m, 1H), 7.83 (dt, \(J = 8.3, 3.0\) Hz, 1H), 7.76 (d, \(J = 8.3\) Hz, 1H), 7.53 – 7.46 (m, 3H), 7.45 – 7.34 (m, 2H), 7.06 (d, \(J = 8.1\) Hz, 1H), 6.95 (dd, \(J = 7.4, 4.9\) Hz, 1H), 4.40 (d, \(J = 13.7\) Hz, 1H), 4.34 (d, \(J = 13.7\) Hz, 1H), 3.84 – 3.66 (m, 2H), 3.45 (dd, \(J = 14.6, 11.3\) Hz, 1H), 2.52 (d, \(J = 2.2\) Hz, 3H).

\begin{align*}
\text{\textbf{19F NMR (282 MHz, Chloroform-\textit{d}) \(\delta = 67.71\) (d, \(J = 7.7\) Hz).}} \\
\text{\textbf{13C NMR (75 MHz, Chloroform-\textit{d}) \(\delta = 158.2, 149.3, 132.3, 128.4, 128.2, 127.5, 127.2\) (q, \(J = 292.4\) Hz), 125.8, 125.7, 125.2, 124.9, 122.2, 62.5 (q, \(J = 25.2\) Hz), 58.4, 36.1, 27.2.}} \\
\text{\textbf{IR (ATR, cm}^{-1}\text{) 3047, 2988, 2942, 2863, 2810, 2253, 1578, 1557, 1510, 1455, 1415, 1374, 1327, 1252, 1166, 1123, 1103, 1072, 1010, 985, 916, 852, 793, 781, 757, 733, 722, 689, 479, 415.}} \\
\text{\textbf{HRMS m/z [M+H]^+ calculated for C}_{20}H_{20}N_{2}S_{3}F^+: 377.1294, found: 377.1298.}} \\
\end{align*}

\textbf{Synthesis of compound 64}

1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-(10H-phenothiazin-10-yl)propan-2-amine

Compound 64 was prepared according to \textit{general procedure B} from 1 (140 mg, 0.3 mmol), \(N\)-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), phenothiazine (1.59 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 \(\mu\)L, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 \(\mu\)L, 0.75 mmol, 2.5 equiv) to afford a yellow oil (88.2 mg, 0.190 mmol, 63% yield).

\(R_f = 0.63\) (hexanes:ethyl acetate= 1:1). \textbf{LRMS (EI, 70 eV): m/z (%): 465(5), 464(15), 213(14), 212(100), 212(19), 181(7), 180(49), 179(9), 141(34), 115(12).} \textbf{1H NMR (300 MHz, Chloroform-\textit{d}) 8.24 – 8.11 (m, 1H), 7.93 – 7.82 (m, 1H), 7.76 (d, \(J = 8.2\) Hz, 1H), 7.53 (tt, \(J = 7.1, 3.7\) Hz, 2H), 7.36 – 7.23 (m, 3H), 7.22 (t, \(J = 7.5\) Hz, 1H), 7.19 (t, \(J = 7.8\) Hz, 1H), 7.10 – 6.99 (m, 3H), 6.92 (s, 1H), 6.89 (s, 1H), 4.40 (dd, \(J = 12.0\) Hz, 2H), 4.27 (d, \(J = 13.5\) Hz, 1H), 4.24 (dd, \(J = 14.1, 3.9\) Hz, 1H), 3.99 (ddq, \(J = 14.3, 8.9, 5.3, 4.6\) Hz, 1H), 2.51 (s, 3H).} \textbf{19F NMR (282 MHz, Chloroform-\textit{d}) \(\delta = 69.80\) (d, \(J = 8.4\) Hz).} \textbf{13C NMR (75 MHz, Chloroform-\textit{d}) \(\delta = 144.8, 134.0, 133.9, 132.3, 128.4, 128.1, 127.7, 127.4, 126.7\) (q, \(J = 287.8\) Hz), 126.4, 125.8, 125.6, 125.2, 124.6, 123.3, 115.4, 59.0, 58.9 (q, \(J = 25.6\) Hz), 43.1, 36.9.} \textbf{IR (ATR, cm}^{-1}\text{) 3063, 2988, 2952, 2884, 2864, 2807, 2252, 1592, 1571, 1456, 1337, 1279, 1251, 1231, 1207, 1158, 1099, 1049, 1028, 900, 856, 791, 774, 749, 604, 508, 445, 427.} \textbf{HRMS m/z [M+H]^+ calculated for C}_{27}H_{24}N_{2}S_{3}F^+: 465.1607, found: 465.1610.
Synthesis of compound 65

N^2-cyclopropyl-3,3,3-trifluoro-N^2-(4-methoxybenzyl)-N^1-methyl-N^1-(naphthalen-1-ylmethyl)propane-1,2-diamine

Compound 65 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-(4-methoxybenzyl)cyclopropanamine (53.2 mg, 0.3 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (122 µL, 0.75 mmol, 2.5 equiv) to afford a white solid (68.9 mg, 0.156 mmol, 52% yield). R_f = 0.38 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 321(1), 301(4), 265(1), 212(2), 185(11), 184(78), 176(4), 142(20), 141(100), 141(66), 139(4), 122(5), 121(51), 115(13), 91(4), 78(4), 77(5).

1H NMR (250 MHz, Chloroform-d) δ 8.43 – 8.29 (m, 1H), 7.95 – 7.75 (m, 2H), 7.60 – 7.37 (m, 4H), 7.04 (d, $J = 8.2$ Hz, 2H), 6.75 (d, $J = 8.5$ Hz, 2H), 4.10 (d, $J = 12.9$ Hz, 1H), 3.86 – 3.73 (m, 4H), 3.66 (s, 2H), 3.55 (ddt, $J = 15.6$, 6.7, 4.0 Hz, 1H), 3.13 (dd, $J = 13.2$, 9.4 Hz, 1H), 2.57 (dd, $J = 13.2$, 3.8 Hz, 1H), 2.27 (s, 3H), 2.24 – 2.15 (m, 1H), 0.33 – 0.07 (m, 4H).

19F NMR (235 MHz, Chloroform-d) δ -69.20.

13C NMR (63 MHz, Chloroform-d) δ 158.6, 134.5, 134.0, 132.7, 132.2, 128.5, 128.3, 127.7, 127.1 (q, $J = 287.8$ Hz), 125.8, 125.3, 125.2, 113.4, 61.8, 60.9 (q, $J = 24.8$ Hz), 55.4, 55.3, 54.5, 42.6, 35.0, 7.8, 7.7. IR (ATR, cm$^{-1}$) 3048, 3005, 2951, 2895, 2860, 2826, 2746, 1771, 1707, 1616, 1598, 1510, 1466, 1428, 1405, 1377, 1334, 1252, 1226, 1192, 1161, 1103, 1055, 1018, 970, 953, 875, 801, 786, 770, 726, 713, 702, 614, 529, 509, 449, 432. HRMS m/z [M+H]$^+$ calculated for C$_{26}$H$_{30}$N$_2$O$_2$F$_3$: 443.2310, found: 443.2313.

Synthesis of compound 66

N^2-allyl-3,3,3-trifluoro-N^2-(4-methoxybenzyl)-N^1-methyl-N^1-(naphthalen-1-ylmethyl)propane-1,2-diamine

Compound 66 was prepared according to general procedure A from 1 (93.2 mg, 0.2 mmol), A1 (35.5 mg, 0.2 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (81.5 µL, 0.5 mmol, 2.5 equiv) to afford a colorless oil (64.6 mg, 0.146 mmol, 73% yield). R_f = 0.50 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 321(2), 185(8), 184(54), 142(12), 141(100), 139(2), 122(2), 121(24), 115(8), 78(2), 77(2). 1H NMR (250 MHz, Chloroform-d) 8.44 – 8.31 (m, 1H), 7.99 – 7.77 (m, 2H), 7.62 – 7.48 (m, 2H), 7.52 – 7.38 (m, 2H), 7.13 (d, $J = 8.3$ Hz, 2H), 6.81 (d, $J = 8.5$ Hz, 2H), 5.69 (ddt, $J = 16.6$, 10.1, 6.4 Hz, 1H), 5.20 – 5.02 (m, 2H), 4.12 (d, $J = 12.9$ Hz, 1H), 3.79 (s, 4H), 3.64 – 3.44 (m, 3H), 3.09 (dt, $J = 27.5$, 7.6 Hz, 3H), 2.60 (dd, $J = 13.3$, 3.8 Hz, 1H), 2.29 (s, 3H). 19F NMR (235 MHz, Chloroform-d) δ -69.11. 13C
NMR (63 MHz, Chloroform-d) 158.8, 137.0, 134.5, 134.1, 132.7, 129.9, 128.5, 128.3, 127.8, 127.3 (q, J = 288.5 Hz), 125.9, 125.8, 125.3, 117.4, 113.7, 61.7, 57.3 (q, J = 24.6 Hz), 55.3, 54.2, 53.5, 53.4, 42.7. IR (ATR, cm⁻¹) 3067, 3047, 3031, 3002, 2952, 2836, 2815, 2789, 1642, 1612, 1585, 1463, 1365, 1302, 1246, 1207, 1170, 1149, 1126, 1096, 1036, 1010, 994, 909, 885, 831, 776, 732, 703, 649, 603, 554, 519, 414, 432. HRMS m/z [M+H]+ calculated for C₂₆H₃₀N₂OF₃+: 443.2310, found: 443.2309.

Synthesis of compound 67

3,3,3-trifluoro-N²-(4-methoxybenzyl)-N¹-methyl-N¹-(naphthalen-1-ylmethyl)-N²-(prop-2-yn-1-yl)propane-1,2-diamine

Compound 67 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-(4-methoxybenzyl)prop-2-yn-1-amine (52.6 mg, 0.3 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (122 µL, 0.75 mmol, 2.5 equiv) to afford a white solid (57.0 mg, 0.129 mmol, 43% yield). Rf = 0.43 (hexanes:diisopropyl ether= 10:1). LRMS (EI, 70 eV): m/z (%): 355(1), 299(1), 185(13), 184(88), 142(13), 142(8), 141(100), 139(5), 121(37), 115(16), 77(4). ¹H NMR (250 MHz, Chloroform-d) 8.40 – 8.29 (m, 1H), 7.96 – 7.78 (m, 2H), 7.58 – 7.49 (m, 1H), 7.48 (t, J = 7.8 Hz, 3H), 7.10 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 4.16 (d, J = 12.9 Hz, 1H), 3.87 (t, J = 10.6 Hz, 2H), 3.79 (s, 3H), 3.55 (dd, J = 17.8, 13.5 Hz, 2H), 3.47 (d, J = 17.3 Hz, 1H), 3.29 (d, J = 17.1 Hz, 1H), 3.11 (dd, J = 13.1, 9.3 Hz, 1H), 2.67 (dd, J = 13.3, 3.3 Hz, 1H), 2.37 (s, 3H), 2.21 (d, J = 9.0 Hz, 1H). ¹⁹F NMR (235 MHz, Chloroform-d) δ -69.40. ¹³C NMR (63 MHz, Chloroform-d) δ 158.9, 134.4, 134.0, 132.6, 130.5, 129.9, 128.6, 128.4, 127.9, 126.9 (q, J = 288.1, 287.6, 287.6 Hz), 126.0, 125.8, 125.3, 125.2, 113.8, 80.9, 72.6, 61.5, 58.1 (q, J = 25.2 Hz), 55.3, 53.8, 53.1, 42.6, 40.0. HRMS m/z [M+H]+ calculated for C₂₆H₂₈N₂OF₃+: 441.2154, found: 441.2148.
Synthesis of compound 68
3,3,3-trifluoro-N2-isobutyl-N1-methyl-N1-(naphthalen-1-ylmethyl)-N2-(3-phenylprop-2-yn-1-yl)propane-1,2-diamine

Compound 68 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-isobutyl-3-phenylprop-2-yn-1-amine (56.2 mg, 0.3 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (122 µL, 0.75 mmol, 2.5 equiv) to afford a white solid (49.7 mg, 0.11 mmol, 37% yield). \(R_f\) = 0.60 (hexanes:diisopropyl ether= 10:1). LRMS (EI, 70 eV): m/z (%): 311(2), 200(2), 185(13), 184(92), 142(6), 141(100), 140(3), 139(4), 116(3), 116(2), 115(53), 89(2), 73(2). ¹H NMR (250 MHz, Chloroform-\(d\)) 8.25 – 8.12 (m, 1H), 7.82 – 7.59 (m, 2H), 7.30 (ddd, \(J\) = 21.7, 10.0, 5.6 Hz, 6H), 7.15 (s, 3H), 3.97 (d, \(J\) = 13.0 Hz, 1H), 3.78 (d, \(J\) = 13.0 Hz, 1H), 3.70 – 3.36 (m, 3H), 2.90 (dd, \(J\) = 13.2, 8.2 Hz, 1H), 2.58 (dd, \(J\) = 13.3, 3.8 Hz, 1H), 2.24 (s, 5H), 1.59 (dp, \(J\) = 13.6, 7.2 Hz, 1H), 0.76 (d, \(J\) = 6.4 Hz, 3H), 0.67 (d, \(J\) = 6.4 Hz, 3H). ¹³C NMR (63 MHz, Chloroform-\(d\)) \(\delta\) 134.5, 134.0, 132.6, 131.7, 128.5, 128.4, 128.1, 127.6, 127.0 (q, \(J\) = 288.4, 287.7 Hz), 125.9, 125.8, 125.3, 125.0, 123.4, 86.7, 84.4, 61.4, 60.5 (q, \(J\) = 25.0 Hz), 58.5, 54.4, 42.6, 41.7, 26.6, 20.6, 20.4. IR (ATR, cm\(^{-1}\)) 3054, 2955, 2945, 2928, 2915, 2908, 2868, 2849, 2820, 1716, 1598, 1510, 1490, 1465, 1443, 1365, 1255, 1160, 1097, 1054, 1010, 907, 885, 861, 841, 793, 776, 756, 732, 691, 649, 645, 621, 605, 554, 526, 430, 415. HRMS m/z [M+H]\(^+\) calculated for C\(_{28}\)H\(_{32}\)N\(_2\)F\(_3\): 453.2518, found: 453.2516.

Synthesis of compound 69
2-(3-(\((\text{tert}-\text{butyldimethylsilyl})\)oxy)azetidin-1-yl)-3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-1-amine

Compound 69 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), 3-\((\text{tert}-\text{butyldimethylsilyl})\)oxyazetidine (56.2 mg, 0.3 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (122 µL, 0.75 mmol, 2.5 equiv) to afford a white solid (71.5 mg, 0.158 mmol, 53% yield). \(R_f\) = 0.48 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 268(1), 185(10), 184(69), 168(1), 142(12), 141(100), 140(2), 115(4), 115(3), 110(2), 101(3), 101(2), 75(2), 73(5), 59(4). ¹H NMR (250 MHz, Chloroform-\(d\)) 8.26 (d, \(J\) = 7.7 Hz, 1H), 7.94 – 7.72 (m, 2H), 7.61 – 7.35 (m, 4H), 4.31 (p, \(J\) = 6.2 Hz, 1H), 4.09 (d, \(J\) = 12.9 Hz, 1H), 3.76 (d, \(J\) = 13.0 Hz, 1H), 3.71 – 3.60 (m, 1H), 3.30 (td, \(J\) = 6.5, 2.6 Hz, 1H), 3.15 (t, \(J\) = 6.7 Hz, 1H), 3.06 – 2.89 (m, 2H), 2.65 (qd, \(J\) = 13.6, 4.8 Hz, 2H), 2.32 (s, 3H), 0.88 (s, 9H), -0.00
(s, 6H). 19F NMR (235 MHz, Chloroform-d) δ -72.80. 13C NMR (63 MHz, Chloroform-d) δ 134.0, 134.0, 132.6, 128.6, 128.4, 127.9, 126.0, 125.8, 124.8, 123.8 (q, $J = 283.1$, 282.7, 282.1 Hz), 65.1, 64.9 (q, $J = 25.2$ Hz), 62.8, 62.5, 61.5, 55.7 (q, $J = 2.2$, 1.7 Hz), 43.2, 25.9, 18.1, -4.9, -5.0. IR (ATR, cm$^{-1}$) 3094, 3047, 2953, 2929, 2887, 2854, 2789, 2773, 2712, 1510, 1463, 1377, 1304, 1259, 1218, 1134, 1079, 1007, 939, 883, 835, 791, 774, 733, 698, 674, 414, 397. HRMS m/z [M+H]$^+$ calculated for C$_{24}$H$_{36}$N$_2$O$_2$F$_3$: 453.2549, found: 453.2548.

Synthesis of compound 70

3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-2-(pyrrolidin-1-yl)propan-1-amine

Compound 70 was prepared according to general procedure A from I (93.2 mg, 0.2 mmol), pyrrolidine (14.2 mg, 0.2 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl) methanamine (81.5 µL, 0.5 mmol, 2.5 equiv) to afford a colorless oil (45.9 mg, 0.136 mmol, 68% yield). $R_f = 0.43$ (hexanes:ethyl acetate= 10:1). M.p. = 51–54 °C. LRMS (EI, 70 eV): m/z (%): 296(1), 210(1), 185(10), 184(66), 142(13), 141(100), 140(2), 139(2), 115(9), 91(2), 75(2), 73(8). 1H NMR (250 MHz, Chloroform-d) 8.41 – 8.27 (m, 1H), 7.99 – 7.73 (m, 2H), 7.61 – 7.37 (m, 4H), 4.09 (d, $J = 12.8$ Hz, 1H), 3.87 (d, $J = 12.8$ Hz, 1H), 3.58 (pd, $J = 8.7$, 3.6 Hz, 1H), 2.99 (dd, $J = 13.3$, 9.0 Hz, 1H), 2.88 – 2.71 (m, 4H), 2.63 (dd, $J = 13.3$, 3.5 Hz, 1H), 2.31 (s, 3H), 1.75 – 1.54 (m, 4H). 19F NMR (235 MHz, Chloroform-d) δ -69.81. 13C NMR (63 MHz, Chloroform-d) δ 134.6, 134.0, 132.7, 128.5, 128.2, 127.7, 124.8 (q, $J = 289.1$ Hz), 61.3, 59.6 (q, $J = 24.7$ Hz), 54.3 – 53.6 (m), 48.7, 42.7, 24.1. IR (ATR, cm$^{-1}$) 3094, 3044, 2953, 2929, 2887, 2854, 2789, 2773, 2712, 1510, 1463, 1377, 1304, 1259, 1218, 1134, 1079, 1007, 939, 883, 835, 791, 774, 733, 698, 674, 414, 397. HRMS m/z [M+H]$^+$ calculated for C$_{19}$H$_{24}$N$_2$F$_3$: 337.1892, found: 337.1885.

Synthesis of compound 71

3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-2-(2-methylpiperidin-1-yl)-N-(naphthalen-1-ylmethyl)propan-1-amine

Compound 71 was prepared according to general procedure A from I (93.2 mg, 0.2 mmol), 2-methylpiperidine (19.8 mg, 0.2 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl) methanamine (81.5 µL, 0.5 mmol, 2.5 equiv) to afford a colorless oil (61.7 mg, 0.169 mmol, 85% yield). $R_f = 0.68$ (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 185(7), 184(47), 180(3), 142(13), 141(100), 140(2), 139(3), 115(11), 112(3), 110(2), 55(6). 1H NMR (250 MHz, Chloroform-d) 8.55 – 8.27 (m, 1H), 7.97 – 7.74 (m, 2H), 7.62 – 7.36 (m, 4H), 4.24 – 3.77 (m,
2H), 3.77 – 3.58 (m, 1H), 3.22 – 2.80 (m, 2H), 2.78 – 2.42 (m, 2H), 2.43 – 2.19 (m, 3H), 2.02 (td, J = 10.9, 4.6 Hz, 1H), 1.82 – 1.22 (m, 6H), 1.17 (d, J = 6.3 Hz, 1H), 1.04 (d, J = 6.1 Hz, 1H), 0.89 (dtd, J = 24.7, 12.4, 6.3 Hz, 1H). \(^{19}\text{F NMR}\) (235 MHz, Chloroform-\(d\)) \(\delta\) -66.66, -70.84 (d, r. = 46:54). \(^{13}\text{C NMR}\) (63 MHz, Chloroform-\(d\)) \(\delta\) 134.5, 134.0, 134.0, 132.7, 132.7, 128.5, 128.4, 128.3, 128.1, 127.8, 127.4, 126.6 (q, J = 284.8, 283.8, 283.5 Hz), 125.8, 125.7, 125.4, 125.2, 125.1, 61.9, 61.3, 57.5 (q, J = 22.8 Hz), 57.0 (q, J = 25.4 Hz), 55.6, 54.6, 52.4, 46.5 (q, J = 1.8 Hz), 46.4, 42.9, 42.7, 36.5, 36.3, 26.8, 26.5, 25.2, 24.4, 21.0, 20.3. \(^{1}\text{H NMR}\) (250 MHz, Methanol-\(d_4\) & Acetone-\(d_6\)) \(\delta\) 8.35 (d, J = 7.9 Hz, 1H), 7.92 – 7.70 (m, 2H), 7.45 (dt, J = 17.3, 7.4 Hz, 4H), 4.09 (d, J = 12.8 Hz, 1H), 3.85 (d, J = 12.7 Hz, 1H), 3.50 – 3.24 (m, 2H), 3.04 – 2.80 (m, 2H), 2.68 – 2.39 (m, 3H), 2.33 (s, 4H), 1.65 – 1.23 (m, 4H), 0.88 (s, 9H), 0.03 (s, 6H). \(^{19}\text{F NMR}\) (235 MHz, Methanol-\(d_4\) & Acetone-\(d_6\)) \(\delta\) -69.95. \(^{13}\text{C NMR}\) (63 MHz, Methanol-\(d_4\) & Acetone-\(d_6\)) \(\delta\) 135.4, 133.9, 129.4, 129.3, 128.9, 128.3 (q, J = 290.5, 289.9 Hz), 126.8, 126.3, 126.1, 69.9, 64.6 (q, J = 24.1 Hz), 62.1, 54.0, 47.6, 43.1, 36.9, 36.7, 26.4, 18.9, -4.4. \(^{1}\text{H NMR}\) (ATR, cm\(^{-1}\)) 3044, 2966, 2931, 2847, 2813, 2813, 1510, 1453, 1377, 1343, 1309, 1256, 1231, 1146, 1127, 1099, 1061, 1010, 967, 907, 889, 858, 829, 791, 774, 733, 698, 649, 624, 557, 520, 457, 414, 655, 613, 553, 520, 466, 411. \(^{1}\text{HRMS}\) m/z [M+H]\(^+\) calculated for C\(_{21}\)H\(_{28}\)N\(_2\)F\(_3\)Si\(^+\): 365.2205, found: 365.2205.

Synthesis of compound 72

2-(3-((tert-butyldimethylsilyl)oxy)piperidin-1-yl)-3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-1-amine

Compound 72 was prepared according to general procedure A from 1 (93.2 mg, 0.2 mmol), 3-((tert-butyldimethylsilyl)oxy)piperidine (43.1 mg, 0.2 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (81.5 µL, 0.5 mmol, 2.5 equiv) to afford a colorless oil (55.6 mg, 0.116 mmol, 58% yield). \(R_f = 0.38\) (hexanes:ethyl acetate= 10:1). **M.p.** = 64–67 °C. LRMS (EI, 70 eV): m/z (%): 296(1), 210(1), 185(10), 184(66), 144(1), 142(13), 141(100), 140(2), 139(2), 118(1), 115(9), 91(2), 77(1), 75(2), 73(8), 68(1), 57(1). \(^{1}\text{H NMR}\) (250 MHz, Methanol-\(d_4\) & Acetone-\(d_6\)) \(\delta\) 8.35 (d, J = 7.9 Hz, 1H), 7.92 – 7.70 (m, 2H), 7.45 (dt, J = 17.3, 7.4 Hz, 4H), 4.09 (d, J = 12.8 Hz, 1H), 3.85 (d, J = 12.7 Hz, 1H), 3.50 – 3.24 (m, 2H), 3.04 – 2.80 (m, 2H), 2.68 – 2.39 (m, 3H), 2.33 (s, 4H), 1.65 – 1.23 (m, 4H), 0.88 (s, 9H), 0.03 (s, 6H). \(^{19}\text{F NMR}\) (235 MHz, Methanol-\(d_4\) & Acetone-\(d_6\)) \(\delta\) -69.95. \(^{13}\text{C NMR}\) (63 MHz, Methanol-\(d_4\) & Acetone-\(d_6\)) \(\delta\) 135.4, 133.9, 129.4, 129.3, 128.9, 128.3 (q, J = 290.5, 289.9 Hz), 126.8, 126.3, 126.1, 69.9, 64.6 (q, J = 24.1 Hz), 62.1, 54.0, 47.6, 43.1, 36.9, 36.7, 26.4, 18.9, -4.4. \(^{1}\text{IR}\) (ATR, cm\(^{-1}\)) 3044, 2966, 2931, 2847, 2813, 2813, 1510, 1453, 1377, 1343, 1309, 1256, 1231, 1146, 1127, 1099, 1061, 1010, 967, 907, 889, 858, 829, 791, 774, 733, 698, 649, 624, 557, 520, 457, 414, 655, 613, 553, 520, 466, 411. \(^{1}\text{HRMS}\) m/z [M+H]\(^+\) calculated for C\(_{26}\)H\(_{40}\)N\(_2\)OF\(_3\)Si\(^+\): 481.2857, found: 481.2859.
Synthesis of compound 73
2-(4-benzylpiperazin-1-yl)-3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-1-amine

Compound 73 was prepared according to general procedure A from 1 (93.2 mg, 0.2 mmol), N-benzylpiperazine (35.3 mg, 0.2 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (81.5 µL, 0.5 mmol, 2.5 equiv) to afford a colorless oil (63.9 mg, 0.145 mmol, 72% yield). Rf = 0.58 (hexanes:ethyl acetate = 7:3). LRMS (EI, 70 eV): m/z (%): 257(1), 185(7), 184(51), 177(2), 146(1), 142(12), 141(100), 140(1), 139(2), 115(7), 92(2), 91(24), 65(2), 56(1). ¹H NMR (250 MHz, Chloroform-d) δ 8.48 – 8.34 (m, 1H), 7.97 – 7.77 (m, 2H), 7.47 – 7.22 (m, 5H), 4.12 – 3.92 (m, 2H), 3.52 (s, 2H), 3.29 (pd, J = 8.8, 3.3 Hz, 1H), 2.93 (dd, J = 13.7, 9.1 Hz, 1H), 2.85 (d, J = 4.7 Hz, 2H), 2.73 (q, J = 7.3, 5.9 Hz, 2H), 2.62 (dd, J = 13.4, 3.4 Hz, 1H), 2.41 (dq, J = 13.1, 5.7, 4.3 Hz, 4H), 2.33 (s, 3H). ¹⁹F NMR (235 MHz, Chloroform-d) δ -68.1. ¹³C NMR (63 MHz, Chloroform-d) δ 137.9, 134.7, 134.0, 132.6, 129.3, 128.5, 128.4, 128.2, 127.5, 127.3, 127.0 (d, J = 290.7 Hz), 125.9, 125.8, 125.2 (d, J = 1.6 Hz), 64.0 (q, J = 23.9 Hz), 63.1, 61.4, 53.8, 53.5 (d, J = 2.0 Hz), 49.2, 42.8. IR (ATR, cm⁻¹) 3061, 2969, 2956, 2941, 2901, 2844, 2810, 2769, 1509, 1494, 1455, 1394, 1367, 1351, 1295, 1255, 1217, 1156, 1124, 1102, 1076, 1052, 1028, 1010, 940, 907, 879, 858, 835, 793, 776, 732, 698, 638, 607, 519, 457, 414. HRMS m/z [M+H]+ calculated for C₂₆H₃₁N₃F₃+: 442.2470, found: 442.2474.

Synthesis of compound 74
3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-2-(4-(pyridin-2-yl)piperazin-1-yl)propan-1-amine

Compound 74 was prepared according to general procedure A from 1 (93.2 mg, 0.2 mmol), N-benzylpiperazine (35.3 mg, 0.2 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (81.5 µL, 0.5 mmol, 2.5 equiv) to afford a colorless oil (69.7 mg, 0.163 mmol, 81% yield). M.p. = 92-95 °C. LRMS (EI, 70 eV): m/z (%): 185(7), 184(47), 142(12), 141(100), 139(2), 133(2), 121(3), 119(3), 115(8), 107(4), 79(5), 78(4). ¹H NMR (250 MHz, Chloroform-d) δ 8.4 – 8.3 (m, 1H), 8.2 (dd, J = 5.0, 2.0 Hz, 1H), 7.8 (t, J = 9.3 Hz, 2H), 7.4 (dt, J = 7.8, 4.9 Hz, 5H), 6.6 (d, J = 7.0 Hz, 1H), 6.6 (d, J = 9.0 Hz, 1H), 4.1 (d, J = 12.9 Hz, 1H), 4.0 (d, J = 12.9 Hz, 1H), 3.6 – 3.2 (m, 5H), 3.0 (dd, J = 13.6, 9.3 Hz, 1H), 2.8 (t, J = 5.2 Hz, 2H), 2.8 (q, J = 6.7, 5.8
Hz, 2H), 2.6 (dd, \(J = 13.5, 3.5 \) Hz, 1H), 2.3 (s, 3H). **19F NMR** (235 MHz, Chloroform-\(d \)) \(\delta \) -68.3. **13C NMR** (63 MHz, Chloroform-\(d \)) \(\delta \) 159.4, 147.9, 137.6, 134.4, 134.0, 132.5, 128.5, 128.3, 127.6, 126.9 (q, \(J = 290.8 \) Hz), 125.9, 125.8, 125.2, 125.0, 113.2, 107.2, 64.1 (q, \(J = 24.1 \) Hz), 61.4, 53.4 (q, \(J = 2.0 \) Hz), 49.2, 46.1, 42.9. **IR** (ATR, cm\(^{-1}\)) 3058, 3036, 3005, 2978, 2959, 2949, 2918, 2887, 2854, 2834, 2782, 1737, 1594, 1563, 1509, 1479, 1435, 1380, 1363, 1336, 1310, 1258, 1239, 1150, 1126, 1100, 1025, 1014, 978, 951, 916, 878, 837, 771, 729, 712, 614, 550, 445, 403. **HRMS** m/z [M+H]\(^+\) calculated for C\(_{24}\)H\(_{28}\)N\(_4\)F\(_3\): 429.2266, found: 429.2264.

Synthesis of compound 75

2-(3,4-dihydroisoquinolin-2(1H)-yl)-3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-1-amine

Compound 75 was prepared according to **general procedure A** from 1 (93.2 mg, 0.2 mmol), 1,2,3,4-tetrahydroisoquinoline (37.6 \(\mu \)L, 0.2 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanamine (81.5 \(\mu \)L, 0.5 mmol, 2.5 equiv) to afford a colorless oil (84.6 mg, 0.212 mmol, 71% yield). \(R_f = 0.40 \) (hexanes:ethyl acetate= 10:1). **LRMS** (EI, 70 eV): m/z (%): 257(1), 214(3), 185(4), 185(3), 184(47), 142(13), 141(100), 139(3), 117(5), 115(16), 105(3). **1H NMR** (300 MHz, Chloroform-\(d \)) \(\delta \) 8.35 (d, \(J = 8.6 \) Hz, 1H), 7.84 (d, \(J = 8.5 \) Hz, 1H), 7.80 (d, \(J = 8.5 \) Hz, 1H), 7.51 – 7.34 (m, 3H), 7.24 – 7.10 (m, 4H), 7.04 – 6.95 (m, 1H), 4.12 (d, \(J = 12.8 \) Hz, 1H), 4.11 (d, \(J = 14.5 \) Hz, 1H), 3.97 (d, \(J = 14.8 \) Hz, 1H), 3.96 (d, \(J = 12.8 \) Hz, 1H), 3.64 – 3.47 (m, 1H), 3.20 – 2.93 (m, 3H), 2.92 – 2.81 (m, 2H), 2.75 (dd, \(J = 13.5, 3.6 \) Hz, 1H), 2.34 (s, 3H). **19F NMR** (282 MHz, Chloroform-\(d \)) \(\delta \) -67.90 (d, \(J = 8.5 \) Hz). **13C NMR** (75 MHz, Chloroform-\(d \)) \(\delta \) 135.2, 134.6, 133.9, 132.5, 128.3, 128.2, 127.6, 127.2 (q, \(J = 291.4 \) Hz), 126.4, 126.0, 125.8, 125.7, 125.6, 125.1, 63.7 (q, \(J = 23.9 \) Hz), 61.2, 53.8, 51.6, 47.3, 42.8, 30.4. **IR** (ATR, cm\(^{-1}\)) 3047, 3023, 2921, 2819, 1597, 1509, 1499, 1465, 1453, 1392, 1253, 1147, 1100, 1051, 1038, 1018, 933, 883, 859, 829, 793, 776, 739, 716, 702, 550, 520, 431, 414. **HRMS** m/z [M+H]\(^+\) calculated for C\(_{24}\)H\(_{26}\)N\(_2\)F\(_3\): 399.2043, found: 399.2044.
Synthesis of compound 76

2-(3-azabicyclo[3.2.2]nonan-3-yl)-3,3,3-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-1-amine

Compound 76 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), 3-azabicyclo[3.2.2]nonane (37.6 mg, 0.3 mmol, 1 equiv) and N-methyl-1-(naphthalen-1-yl)methanimine (122 µL, 0.75 mmol, 2.5 equiv) to afford a white solid (64.0 mg, 0.164 mmol, 55% yield). Rf = 0.70 (hexanes:ethyl acetate = 10:1). M.p. = 114-117 °C. LRMS (EI, 70 eV): m/z (%): 206(1), 185(9), 184(62), 142(13), 139(3), 126(2), 115(9), 112(5), 67(4), 55(2). 1H NMR (250 MHz, Chloroform-d) δ 8.40 – 8.29 (m, 1H), 7.93 – 7.73 (m, 2H), 7.60 – 7.37 (m, 4H), 4.05 (d, J = 12.9 Hz, 1H), 3.94 (d, J = 12.9 Hz, 1H), 3.36 (tt, J = 11.3, 5.7 Hz, 1H), 2.97 (dd, J = 13.1, 8.7 Hz, 1H), 2.81 (qd, J = 11.7, 4.2 Hz, 4H), 2.59 (dd, J = 13.2, 3.6 Hz, 1H), 2.33 (s, 3H), 1.81 (s, 2H), 1.67 (d, J = 9.1 Hz, 4H), 1.63 – 1.44 (m, 4H). 19F NMR (235 MHz, Chloroform-d) δ -68.81. 13C NMR (63 MHz, Chloroform-d) δ 134.6, 134.0, 132.7, 129.8 (q, J = 292.0, 291.5 Hz), 128.5, 128.3, 127.7, 125.8, 125.2, 125.1, 64.0 (q, J = 24.2 Hz), 61.8, 59.0, 54.6, 42.3, 31.4, 25.6, 25.5. IR (ATR, cm⁻¹) 3064, 3037, 2996, 2921, 2857, 2827, 2802, 2765, 1509, 1458, 1449, 1402, 1382, 1358, 1344, 1300, 1256, 1173, 1151, 1134, 1102, 1089, 1051, 1011, 964, 882, 869, 859, 839, 793, 774, 708, 681, 614, 583, 552, 522, 464, 415. HRMS m/z [M+H]+ calculated for C23H30N2F3+: 391.2361, found: 391.2363.

Synthesis of compound 77

N,N-diethyl-1,1,1-trifluoro-3-(10H-phenothiazin-10-yl)propan-2-amine

Compound 77 was prepared according to general procedure B from 1 (140 mg, 0.3 mmol), diethylamine (31 µL, 0.3 mmol, 1 equiv), phenothiazine (159 mg, 0.78 mmol, 2.6 equiv), solution of LiHMDS (750 µL, 1 M in THF, 0.75 mmol, 2.5 equiv) and HMPA (132 µL, 0.75 mmol, 2.5 equiv) to afford a white solid (68.9 mg, 0.188 mmol, 62% yield). Rf = 0.67 (hexanes:ethyl acetate = 3:1). M.p. = 65-69 °C. LRMS (EI, 70 eV): m/z (%): 366(7), 293(2), 224(1), 213(15), 212(100), 198(9), 180(41), 179(7), 126(3), 98(3), 77(1), 56(1). 1H NMR (250 MHz, Methanol-d₄) δ 7.23 – 7.03 (m, 4H), 7.00 – 6.84 (m, 4H), 4.21 (dd, J = 14.6, 9.2 Hz, 1H), 4.12 (dd, J = 14.4, 4.4 Hz, 1H), 3.76 (pd, J = 8.8, 4.2 Hz, 1H), 2.61 (qd, J = 6.9, 2.8 Hz, 4H), 0.77 (t, J = 7.1 Hz, 6H). 19F NMR (235 MHz, Methanol-d₄) δ -71.60. 13C NMR (63 MHz, Methanol-d₄) δ 145.1, 127.6, 127.5, 127.4 (q, J = 289.0 Hz), 126.4, 123.0, 58.0 (q, J = 24.9 Hz), 44.6, 43.5 (q, J = 1.8 Hz).

Synthesis of compound 78
1,1,1,3-tetrafluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 78 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and cesium fluoride (114 mg, 0.75 mmol, 2.5 equiv) to afford a colorless oil (55.6 mg, 0.195 mmol, 65% yield). R_f = 0.63 (hexanes:ethyl acetate = 10:1). LRMS (EI, 70 eV): m/z (%): 286(2), 285(14), 284(2), 252(2), 216(2), 168(2), 158(4), 142(17), 141(100), 140(2), 139(7), 127(2), 126(2), 116(2), 115(18), 89(2). ¹H NMR (250 MHz, Chloroform-d) 8.31 – 8.18 (m, 1H), 7.97 – 7.79 (m, 2H), 7.64 – 7.46 (m, 3H), 7.52 – 7.39 (m, 1H), 4.92 – 4.73 (m, 1H), 4.74 – 4.54 (m, 1H), 4.35 (s, 2H), 3.61 (dqdd, J = 17.3, 8.6, 6.8, 4.9 Hz, 1H), 2.57 (s, 3H). ¹⁹F NMR (235 MHz, Chloroform-d) δ = -67.89 (t, J = 7.7 Hz, 3F), -229.51 (tdq, J = 46.1, 17.8, 6.5 Hz, 1F). ¹³C NMR (63 MHz, Chloroform-d) δ 134.1, 133.6, 132.4, 128.7, 127.7, 126.1, 126.1 (qd, J = 289.2, 10.0 Hz), 125.9, 125.3, 124.5, 79.5 (qd, J = 174.7, 2.3 Hz), 62.5 (qd, J = 26.0, 20.8 Hz), 58.9, 37.5. IR (ATR, cm⁻¹) 3048, 2962, 2897, 2864, 2817, 1598, 1510, 1463, 1397, 1374, 1316, 1272, 1249, 1160, 1112, 1054, 1018, 852, 791, 774, 734, 708, 614, 586, 564, 544, 532, 519, 444, 415. HRMS m/z [M+H]^+ calculated for C₁₅H₁₆NF₄+: 286.1219, found: 286.1219.

Synthesis of compound 79
3-chloro-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 79 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and tetrabutylammonium chloride (215 mg, 0.75 mmol, 2.5 equiv) to afford a colorless oil (72.3 mg, 0.239 mmol, 80% yield). R_f = 0.68 (hexanes:ethyl acetate = 10:1). LRMS (EI, 70 eV): m/z (%): 303(3), 301(10), 252(4), 232(3), 142(16), 141(100), 139(7), 115(17). ¹H NMR (250 MHz, Chloroform-d) 8.28 (dd, J = 7.2, 1.8 Hz, 1H), 7.92 (dt, J = 6.4, 2.5 Hz, 1H), 7.85 (d, J = 8.2 Hz, 1H), 7.58 (qd, J = 4.3, 1.9 Hz, 2H), 7.52 (d, J = 5.5 Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 4.42 (dd, J = 13.5, 2.8 Hz, 2H), 3.91 – 3.70 (m, 2H), 3.63 (pd, J = 8.1, 4.6 Hz, 1H), 2.53 (s, 3H). ¹⁹F NMR (235 MHz, Chloroform-d) δ = -68.17. ¹³C NMR (63 MHz, Chloroform-d) δ 134.0, 133.7, 132.3, 128.6, 128.5, 127.6, 126.0, 125.9, 125.4 (d,
\[J = 290.8 \text{ Hz}, \ 125.3, \ 124.6, \ 65.2 \ (q, \ J = 25.9 \text{ Hz}), \ 58.6, \ 39.2 \ (d, \ J = 2.0 \text{ Hz}), \ 36.1. \ \textbf{IR} \ (\text{ATR}, \ \text{cm}^{-1}) \ 3048, \ 2945, \ 2863, \ 2816, \ 1598, \ 1510, \ 1448, \ 1374, \ 1337, \ 1256, \ 1171, \ 1137, \ 1105, \ 1083, \ 1017, \ 970, \ 940, \ 784, \ 770, \ 733, \ 688, \ 649, \ 576, \ 542, \ 519, \ 415. \ \textbf{IR} \ (\text{ATR}, \ \text{cm}^{-1}) \ 3048, \ 2945, \ 2863, \ 2816, \ 1598, \ 1510, \ 1477, \ 1448, \ 1374, \ 1337, \ 1256, \ 1171, \ 1137, \ 1105, \ 1083, \ 1017, \ 970, \ 940, \ 784, \ 770, \ 733, \ 688, \ 649, \ 576, \ 542, \ 519, \ 415. \ \textbf{HRMS} \ m/z \ [\text{M+H}]^{+} \ \text{calculated} \ \text{for} \ C_{15}H_{16}N^{37}\text{ClF}_{3}^{+} : 304.0894, \ \text{found}: 304.0893.

\textit{Synthesis of compound 80}

3-bromo-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 80 was prepared according to \textit{general procedure A} from 1 (140 mg, 0.3 mmol), \(N \)-methyl-1-(naphthalen-1-yl) methanamine (51.4 mg, 0.3 mmol, 1 equiv) and tetrabutylammonium bromide (244 mg, 0.75 mmol, 2.5 equiv) to afford a colorless oil (74.1 mg, 0.214 mmol, 71% yield). \(R_f = 0.75 \) (hexanes:ethyl acetate= 10:1). \textbf{LRMS} (EI, 70 eV): \(m/z \ (%) : \ 347(4), \ 345(4), \ 278(4), \ 276(4), \ 252(3), \ 218(1), \ 168(2), \ 142(16), \ 141(100), \ 139(8), \ 127(2), \ 126(2), \ 116(2), \ 115(17), \ 89(1), \ 63(1). \ \textbf{1H NMR} \ (250 MHz, \text{Chloroform-}d) \ 8.35 – 8.21 \ (m, 1H), \ 7.97 – 7.79 \ (m, 2H), \ 7.69 – 7.30 \ (m, 4H), \ 4.42 \ (dd, \ J = 13.5, 3.9 \text{ Hz, 2H}), \ 3.79 – 3.61 \ (m, 1H), \ 3.67 – 3.54 \ (m, 2H), \ 2.55 – 2.47 \ (m, 3H). \ \textbf{19F NMR} \ (235 MHz, \text{Chloroform-}d) \ \delta -67.98. \ \textbf{13C NMR} \ (63 MHz, \text{Chloroform-}d) \ \delta 134.0, \ 133.6, \ 132.3, \ 128.6, \ 128.5, \ 127.6, \ 126.0, \ 125.9, \ 125.4 \ (d, \ J = 291.7 \text{ Hz}), \ 125.3, \ 124.7, \ 65.2 \ (q, \ J = 25.8 \text{ Hz}), \ 58.3, \ 35.9, \ 25.9 \ (q, \ J = 1.7 \text{ Hz}). \ \textbf{IR} \ (\text{ATR}, \ \text{cm}^{-1}) \ 3048, \ 2979, \ 2944, \ 2860, \ 2813, \ 1598, \ 1510, \ 1453, \ 1373, \ 1326, \ 1249, \ 1167, \ 1102, \ 1075, \ 1008, \ 968, \ 913, \ 858, \ 844, \ 791, \ 780, \ 771, \ 732, \ 658, \ 641, \ 573, \ 539, \ 518, \ 415. \ \textbf{HRMS} \ m/z \ [\text{M+H}]^{+} \ \text{calculated} \ \text{for} \ C_{15}H_{16}N^{81}\text{BrF}_{3}^{+} : 348.0398, \ \text{found}: 348.0401.

\textit{Synthesis of compound 81}

1,1,1-trifluoro-3-iodo-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 81 was prepared according to \textit{general procedure A} from 1 (140 mg, 0.3 mmol), \(N \)-methyl-1-(naphthalen-1-yl) methanamine (51.4 mg, 0.3 mmol, 1 equiv) and sodium iodide (114 mg, 0.75 mmol, 2.5 equiv) to afford a colorless oil (91.8 mg, 0.234 mmol, 78% yield). \(R_f = 0.77 \) (hexanes:ethyl acetate= 10:1). \textbf{LRMS} (EI, 70 eV): \(m/z \ (%) : \ 393(5), \ 324(11), \ 252(5), \ 223(1), \ 196(1), \ 168(4), \ 142(14), \ 141(100), \ 139(8), \ 115(19), \ 98(2), \ 77(1). \ \textbf{1H NMR} \ (250 MHz, \text{Acetone-}d_{6}) \ 8.36 – 8.25 \ (m, 1H), \ 7.98 – 7.80 \ (m, 2H), \ 7.64 \ (d, \ J = 7.0 \text{ Hz, 1H}), \ 7.61 – 7.40 \ (m, 3H), \ 4.45 \ (s, 2H), \ 3.81 \ (td, \ J = 8.1, \ 6.1 \text{ Hz, 1H}), \ 3.65 – 3.45 \ (m, 2H), \ 2.43 \ (t, \ J = 1.8 \text{ Hz, 3H}). \ \textbf{19F NMR} \ (235 MHz, \text{Acetone-}d_{6}) \ \delta -68.19. \ \textbf{13C NMR} \ (63 MHz, \text{Acetone-}d_{6}) \ \delta 134.9, \ 134.8, \ 133.1, \ 129.2, \ 129.0, \ 128.1, \ 126.6, \ 126.5, \ 126.1 \ (q, \ J = 292.6 \text{ Hz}), \ 126.0, \ 125.8, \ 66.3 \ (q, \ J = 25.4 \text{ Hz}), \ 58.3 \ (d, \ J = 1.4 \text{ Hz}), 82
35.6, -2.8. **IR** (ATR, cm$^{-1}$) 3047, 2979, 2841, 2810, 1598, 1510, 1463, 1452, 1373, 1319, 1246, 1160, 1102, 1018, 1000, 888, 855, 837, 791, 777, 732, 710, 621, 605, 570, 537, 518, 414. **HRMS** m/z [M+H]$^+$ calculated for C$_{15}$H$_{16}$NIF$_3$: 394.0280, found: 394.0280.

Synthesis of compound 82
3-azido-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 82 was prepared according to **general procedure A** from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl) methanamine (51.4 mg, 0.3 mmol, 1 equiv) and sodium azide (48.8 mg, 0.75 mmol, 2.5 equiv) to afford a white crystalline solid (73.7 mg, 0.239 mmol, 80% yield). **Rf** = 0.65 (hexanes:ethyl acetate= 10:1). **M.p.** = 79-80 °C. **LRMS** (EI, 70 eV): m/z (%): 308(1), 280(1), 253(3), 252(17), 169(2), 168(4), 142(13), 141(100), 139(7), 116(2), 115(17). **1H NMR** (250 MHz, Chloroform-d) δ 8.26 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 7.5, 1.9 Hz, 1H), 7.86 (dd, J = 13.2 Hz, 1H), 4.43 (d, J = 13.2 Hz, 1H), 3.61 (dd, J = 12.6, 9.6 Hz, 1H), 3.31 (dd, J = 12.6, 3.6 Hz, 1H), 2.55 (s, 3H).

19F NMR (235 MHz, Chloroform-d) δ -67.45. **13C NMR** (63 MHz, Chloroform-d) δ 134.4, 133.6, 132.7, 129.0, 128.9, 128.2, 126.4, 126.3, 126.0 (q, J = 290.4 Hz), 125.6, 124.7, 62.8 (q, J = 25.1 Hz), 59.0, 47.4 (q, J = 2.1 Hz), 36.3. **IR** (ATR, cm$^{-1}$) 3061, 3037, 3000, 2975, 2942, 2917, 2877, 2856, 2806, 2169, 2106, 1597, 1509, 1479, 1455, 1394, 1377, 1320, 1290, 1248, 1198, 1177, 1157, 1112, 1071, 1051, 1031, 973, 951, 915, 845, 810, 793, 776, 722, 712, 649, 583, 542, 440, 421. **HRMS** m/z [M+H]$^+$ calculated for C$_{15}$H$_{16}$N$_4$F$_3$: 309.1327, found: 309.1326.

Synthesis of compound 83
4,4,4-trifluoro-3-(methyl(naphthalen-1-ylmethyl)amino)butanenitrile

Compound 83 was prepared according to **general procedure A** from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl) methanamine (51.4 mg, 0.3 mmol, 1 equiv) and potassium cyanide (48.8 mg, 0.75 mmol, 2.5 equiv) to afford an off white solid (71.9 mg, 0.248 mmol, 83% yield). **Rf** = 0.23 (hexanes:ethyl acetate= 10:1). **M.p.** = 50-54 °C. **LRMS** (EI, 70 eV): m/z (%): 293(5), 292(26), 291(2), 252(3), 223(1), 168(2), 142(21), 141(100), 139(8), 115(21), 54(3). **1H NMR** (250 MHz, Chloroform-d) δ 8.3 – 8.1 (m, 1H), 8.0 – 7.8 (m, 2H), 7.7 – 7.4 (m, 4H), 4.4 (d, J = 2.9 Hz, 2H), 3.7 (dq, J = 10.1, 7.7, 4.9 Hz, 1H), 2.8 (dd, J = 17.1, 10.1 Hz, 1H), 2.6 (dd, J = 17.1, 4.9 Hz, 1H), 2.5 (q, J = 1.8 Hz, 3H). **19F NMR** (235 MHz, Chloroform-d) δ -69.2. **13C NMR** (63 MHz, Chloroform-d) δ 134.0, 132.7, 132.2, 128.8, 128.6, 127.7, 126.3, 126.1, 125.9 (q, J = 290.9 Hz), 83
125.3, 124.4, 116.4, 59.6 (q, \(J = 27.3 \) Hz), 58.2 (d, \(J = 1.5 \) Hz), 36.0 (d, \(J = 1.4 \) Hz), 16.1 (q, \(J = 2.3 \) Hz). \(\text{IR} \) (ATR, \(\text{cm}^{-1} \)) 3088, 3054, 3002, 2968, 2941, 2915, 2893, 2851, 2810, 2254, 1598, 1510, 1465, 1438, 1419, 1390, 1368, 1356, 1303, 1285, 1259, 1241, 1191, 1171, 1150, 1110, 1065, 1051, 1012, 968, 946, 844, 804, 783, 774, 737, 720, 703, 608, 546, 421. \(\text{HRMS} \) m/z [M+H]^+ calculated for \(\text{C}_{16}\text{H}_{14}\text{N}_{2}\text{F}_{3}^+ \): 291.1109, found: 291.1110.

Synthesis of compound 84

\(\text{N-}(4\text{-methoxybenzyl})-\text{N-}(1,1,1,3\text{-tetrafluoropropan-2-yl})\text{prop-2-en-1-amine} \)

Compound 84 was prepared according to \textit{general procedure A} from \(\mathbf{1} \) (140 mg, 0.3 mmol), \(\text{N-}(4\text{-methoxybenzyl})\text{prop-2-en-1-amine} \) (53.2 mg, 0.3 mmol, 1 equiv) and cesium fluoride (114 g, 0.75 mmol, 2.5 equiv) to afford a colorless oil (64.1 mg, 0.220 mmol, 73% yield). \(\mathbf{R_f} = 0.60 \) (hexanes:ethyl acetate= 10:1). \(\text{LRMS} \) (EI, 70 eV): m/z (%): 291(2), 222(1), 183(1), 170(1), 148(7), 122(17), 121(100), 121(68), 110(4), 91(8), 90(3), 89(5), 78(12), 77(12), 65(3), 52(2), 51(3). \(\text{HRMS m/z [M+H]^+ calculated for C}_{16}\text{H}_{14}\text{N}_{2}\text{F}_{3}^+ \): 292.1325, found: 292.1319.

Synthesis of compound 85

\(\text{1-}(\text{pyridin-2-yl})-4-(1,1,1,3\text{-tetrafluoropropan-2-yl})\text{piperazine} \)

Compound 85 was prepared according to \textit{general procedure A} from with \(\mathbf{1} \) (140 mg, 0.3 mmol), \(\text{N-benzylpiperazine} \) (49.0 mg, 0.3 mmol, 1 equiv) and cesium fluoride (114 g, 0.75 mmol, 2.5 equiv) to afford a white solid (53.2 mg, 0.192 mmol, 64% yield). \(\mathbf{R_f} = 0.60 \) (hexanes:ethyl acetate= 7:3). \(\text{M.p.}= 44\text{--}47 \degree \text{C} \). \(\text{LRMS} \) (EI, 70 eV): m/z (%): 277(10), 208(1), 133(13), 121(6), 120(7), 119(13), 110(6), 108(7), 107(100), 79(22), 78(17), 74(5), 56(6), 52(4), 51(6). \(\text{HRMS m/z [M+H]^+ calculated for C}_{14}\text{H}_{18}\text{NOF}_{4}^+ \): 292.1325, found: 292.1319.
1H), 2.9 (p, J = 6.3, 5.3 Hz, 4H). 19F NMR (235 MHz, Chloroform-d) δ -68.3 (d, J = 6.8 Hz, 3F), -228.8 (q, J = 6.8 Hz, 1F). 13C NMR (63 MHz, Chloroform-d) δ 159.43, 147.97, 137.66, 125.51 (qd, J = 288.1, 9.7 Hz), 113.54, 107.23, 80.53 (qd, J = 175.1, 2.3 Hz), 65.40 (qd, J = 26.2, 20.6 Hz), 50.08, 46.07. IR (ATR, cm$^{-1}$) 3097, 3060, 2999, 2961, 2917, 2895, 2843, 2768, 2710, 2649, 1598, 1560, 1483, 1439, 1385, 1364, 1340, 1316, 1302, 1282, 1245, 1231, 1205, 1154, 1112, 1097, 1015, 997, 980, 963, 940, 924, 851, 771, 717, 702, 622, 605, 569, 520, 495, 458. HRMS m/z [M+H]$^+$ calculated for C$_{12}$H$_{16}$N$_3$F$_4$: 278.1280, found: 278.1281.

Synthesis of compound 86

3-(benzyloxy)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 86 was prepared according to general procedure C from 1 (93.2 mg, 0.2 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (34.2 mg, 0.2 mmol, 1 equiv), benzyl alcohol (52 µL, 0.5 mmol, 2.5 equiv) and sodium hydride (20 mg, 60 w% in oil, 0.5 mmol, 2.5 equiv) to afford a colorless oil (37.2 mg, 0.0996 mmol, 50% yield). R_f = 0.50 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 267(4), 252(2), 232(1), 171(7), 170(3), 156(3), 142(15), 141(100), 139(3), 126(5), 115(11), 91(13), 65(2). 1H NMR (250 MHz, Chloroform-d) 8.28 (dd, J = 6.4, 2.7 Hz, 1H), 7.97 – 7.75 (m, 2H), 7.62 – 7.28 (m, 9H), 4.55 (s, 2H), 4.37 (s, 2H), 3.79 (dd, J = 10.3, 4.3 Hz, 1H), 3.64 (ddq, J = 12.6, 8.5, 4.2 Hz, 1H), 2.51 (s, 3H). 19F NMR (235 MHz, Chloroform-d) δ -68.13. 13C NMR (63 MHz, Chloroform-d) δ 137.9, 134.3, 134.1, 132.5, 128.6, 128.3, 127.9, 127.7, 127.6, 126.7 (q, J = 289.1, 288.7 Hz), 126.0, 125.8, 125.3, 124.7, 73.5, 66.1 (q, J = 1.8 Hz), 63.2 (q, J = 25.4 Hz), 58.9, 37.3. IR (ATR, cm$^{-1}$) 3064, 3036, 2942, 2863, 2809, 1714, 1598, 1510, 1455, 1367, 1313, 1249, 1209, 1160, 1105, 1072, 1029, 907, 849, 791, 774, 730, 696, 649, 625, 587, 544, 461, 417. HRMS m/z [M+H]$^+$ calculated for C$_{22}$H$_{28}$NO$_3$F$_3$: 374.1732, found: 374.1732.
Synthesis of compound 87
3-(4-bromophenoxy)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 87 was prepared according to general procedure C from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), 4-bromo-phenol (130 mg, 0.75 mmol, 2.5 equiv) and sodium hydride (30 mg, 60 w% in oil, 0.75 mmol, 2.5 equiv) to afford a colorless oil (114 mg, 0.261 mmol, 87% yield). Rf = 0.68 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 440(1), 439(3), 437(2), 253(3), 252(20), 207(1), 185(1), 168(2), 155(3), 142(13), 142(6), 141(100), 139(5), 115(10), 115(5), 63(1). 1H NMR (250 MHz, Chloroform-d) 8.31 (dd, J = 6.0, 3.4 Hz, 1H), 8.00 – 7.81 (m, 2H), 7.67 – 7.43 (m, 4H), 7.40 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 8.7 Hz, 2H), 4.42 (d, J = 3.0 Hz, 2H), 4.54 – 4.08 (m, 2H), 3.92 – 3.66 (m, 1H), 2.61 (s, 3H).

19F NMR (235 MHz, Chloroform-d) δ -67.62. 13C NMR (63 MHz, Chloroform-d) δ 157.2, 134.1, 133.8, 132.4, 128.6, 127.8, 126.5 (q, J = 289.7, 286.6, 288.5 Hz), 126.0, 125.9, 125.3, 124.7, 116.4, 113.7, 64.1 (q, J = 1.6 Hz), 61.9 (q, J = 25.7 Hz), 59.0, 37.1. IR (ATR, cm⁻¹) 3061, 3048, 3007, 2948, 2917, 2891, 2867, 2813, 2793, 1592, 1578, 1489, 1469, 1446, 1395, 1382, 1374, 1272, 1235, 1215, 1166, 1126, 1100, 1071, 1054, 1036, 1024, 1001, 892, 821, 803, 790, 776, 739, 710, 654, 641, 625, 607, 518, 503, 476, 442, 428.

HRMS m/z [M+H]+ calculated for C₂₁H₂₀NOBrF₃+: 438.0680, found: 438.0680.

Synthesis of compound 88
3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl benzoate

Compound 88 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and sodium benzoate (108 mg, 0.75 mmol, 2.5 equiv) to afford a white solid (91.7 mg, 0.237 mmol, 79% yield). Rf = 0.49 (hexanes:ethyl acetate= 10:1). M.p. = 94-96 °C. LRMS (EI, 70 eV): m/z (%): 440(1), 439(3), 437(2), 253(3), 252(20), 207(1), 185(1), 168(2), 155(3), 142(13), 142(6), 141(100), 139(5), 115(10), 115(5), 63(1). 1H NMR (250 MHz, Chloroform-d) 8.16 (d, J = 8.4 Hz, 1H), 8.00 – 7.89 (m, 2H), 7.84 (t, J = 8.3 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H), 7.54 – 7.37 (m, 5H), 7.31 (t, J = 7.6 Hz, 1H), 4.74 (dd, J = 11.7, 8.6 Hz, 1H), 4.53 (dd, J = 11.8, 4.5 Hz, 1H), 4.38 (s, 2H), 3.80 (ddq, J = 13.1, 8.5, 4.8, 4.2 Hz, 1H), 2.62 (s, 3H). 19F NMR (235 MHz, Chloroform-d) δ -67.16. 13C NMR (63 MHz, Chloroform-d) δ 166.1, 134.0, 133.6, 133.2, 132.4, 129.8, 129.7, 128.5, 128.5, 127.7, 126.1, 125.8, 125.2, 124.3, 124.3 (q, J = 291.0, 290.5 Hz), 61.7 (q, J = 25.5 Hz), 59.8 (d, J
Synthesis of compound 89
3-(cyclohexylthio)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine
Compound 89 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), cyclohexanethiol (92 µL, 0.75 mmol, 2.5 equiv) to afford a colorless oil (89.3 mg, 0.234 mmol, 78% yield). Rf = 0.63 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 381(1), 267(2), 253(2), 252(11), 171(3), 170(16), 168(2), 142(16), 141(100), 139(3), 115(11), 83(2), 55(4), 55(2). 1H NMR (250 MHz, Chloroform-d) δ 8.31 (d, J = 7.9 Hz, 1H), 7.95 – 7.77 (m, 2H), 7.65 – 7.40 (m, 4H), 4.43 (d, J = 13.8 Hz, 1H), 4.36 (d, J = 13.7 Hz, 1H), 3.50 (ddh, J = 16.3, 8.2, 4.2 Hz, 1H), 2.98 (dd, J = 13.5, 10.3 Hz, 1H), 2.82 (dd, J = 13.5, 4.0 Hz, 1H). 19F NMR (235 MHz, Chloroform-d) δ -68.07. 13C NMR (63 MHz, Chloroform-d) δ 134.1, 134.0, 132.5, 128.5, 128.3, 127.6, 125.9, 125.8, 125.3, 124.9, 124.9 (q, J = 292.2 Hz), 63.9 (q, J = 24.8 Hz), 58.4, 43.9, 36.0, 33.4, 33.4, 27.0, 26.1, 26.0, 25.9. IR (ATR, cm⁻¹) 3047, 2928, 2853, 2832, 2810, 1598, 1510, 1448, 1373, 1327, 1252, 1163, 1102, 1080, 1001, 968, 907, 886, 856, 791, 773, 732, 689, 649, 574, 540, 519, 415. HRMS m/z [M+H]+ calculated for C22H21N2O2F3+: 388.1524, found: 388.1527.

Synthesis of compound 90
3-([(4-chlorophenyl)thio]-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine
Compound 90 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), 4-chlorotioiphenol (108 mg, 0.75 mmol, 2.5 equiv) to afford a white solid (83.0 mg, 0.203 mmol, 68% yield). Rf = 0.68 (hexanes:ethyl acetate= 10:1). M.p. = 71-73 °C. LRMS (EI, 70 eV): m/z (%): 141(100), 252(26), 142(15), 115(14), 253(4), 139(4), 409(2), 168(2), 108(2), 170(2), 157(2). 1H NMR (250 MHz, Chloroform-d) δ 8.28 (d, J = 7.5 Hz, 1H), 8.00 – 7.80 (m, 2H), 7.68 – 7.40 (m, 5H), 7.20 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 4.39 (td, J = 13.5, 6.5 Hz, 2H), 3.52 (tt, J = 12.9, 6.4 Hz, 1H), 3.27 (dd, J = 13.6, 9.6 Hz, 1H), 3.17 (dd, J = 13.5, 7.3 Hz, 1H), 2.56 (s, 3H). 19F NMR (235 MHz, Chloroform-d) δ -67.35. 13C NMR (63 MHz,
Chloroform-d δ 134.2, 134.0, 133.5, 132.5, 132.4, 130.8, 129.2, 128.6, 128.4, 127.7, 126.0, 125.8, 125.3, 124.8, 124.7 (q, $J = 292.8, 292.3$ Hz), 62.0 (q, $J = 25.1$ Hz), 58.2, 36.1, 31.8 (q, $J = 1.0$ Hz).

IR (ATR, cm$^{-1}$) 3068, 3047, 3010, 3000, 2959, 2935, 2919, 2870, 2856, 2805, 1509, 1473, 1387, 1364, 1327, 1296, 1255, 1226, 1171, 1154, 1123, 1102, 1090, 1073, 1012, 966, 864, 852, 827, 817, 804, 787, 771, 742, 716, 691, 587, 540, 496, 420. HRMS m/z [M+H]$^+$ calculated for C$_{21}$H$_{20}$NF$_3$SCl$^+$: 410.0957, found: 410.0964.

Synthesis of compound 91

3-(benzo[d]thiazol-2-ylthio)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 91 was prepared according to general general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and 2-mercaptobenzthiazole (125 mg, 0.75 mmol, 2.5 equiv) to afford a pale yellow solid (106 mg, 0.245 mmol, 82% yield). R_f = 0.55 (hexanes:ethyl acetate= 10:1). $\text{M.p.}= 82$–85 °C. LRMS (EI, 70 eV): m/z (%): 432(2), 291(4), 284(4), 266(3), 265(17), 264(8), 196(8), 170(3), 169(9), 168(33), 167(7), 154(2), 149(4), 142(12), 141(100), 139(4), 136(4), 116(2), 115(15), 108(2).

1H NMR (250 MHz, Chloroform-d) δ 8.27–8.16 (m, 1H), 7.92–7.68 (m, 4H), 7.63–7.38 (m, 4H), 7.44–7.22 (m, 2H), 4.42 (d, $J = 13.2$ Hz, 1H), 4.36 (d, $J = 13.6$ Hz, 1H), 4.03–3.80 (m, 2H), 3.64 (dd, $J = 13.8, 11.1$ Hz, 1H), 2.57 (t, $J = 2.0$ Hz, 3H). 19F NMR (235 MHz, Chloroform-d) δ -67.14. 13C NMR (63 MHz, Chloroform-d) δ 166.0, 153.1 (d, $J = 292.9$ Hz), 135.3, 133.9, 133.4, 132.3, 128.5, 128.4, 127.6, 127.0 (q, $J = 292.9$ Hz), 126.0, 125.9, 125.8, 125.1, 124.7, 124.3, 121.6, 121.0, 61.7 (q, $J = 25.5$ Hz), 58.2, 35.9, 30.6 (q, $J = 1.8$ Hz).

IR (ATR, cm$^{-1}$) 3091, 3051, 3040, 2997, 2968, 2932, 2912, 2857, 2810, 1509, 1458, 1428, 1388, 1363, 1351, 1330, 1309, 1302, 1251, 1164, 1122, 1103, 1069, 1049, 1018, 995, 907, 864, 851, 804, 784, 773, 757, 729, 703, 691, 672, 649, 603, 586, 540, 428, 420. HRMS m/z [M+H]$^+$ calculated for C$_{22}$H$_{20}$N$_2$F$_3$S$_2$+: 433.1020, found: 433.1016.
Synthesis of compound 92
1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-(phenylsulfonyl)propan-2-amine

Compound 92 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and sodium benzenesulfinate (126 mg, 0.75 mmol, 2.5 equiv) to afford a colorless oil (70.7 mg, 0.174 mmol, 58% yield). Rf = 0.65 (ethyl acetate). 1H NMR (250 MHz, Chloroform-d) δ 8.28 – 8.10 (m, 1H), 7.94 – 7.77 (m, 2H), 7.73 – 7.36 (m, 9H), 4.42 – 4.18 (m, 3H), 3.90 – 3.74 (m, 1H), 3.73 – 3.42 (m, 1H), 2.56 – 2.29 (m, 3H). 19F NMR (235 MHz, Chloroform-d) δ -67.74, -67.79. 13C NMR (63 MHz, Chloroform-d) δ 144.1, 143.9, 143.0, 133.7, 133.6, 132.5, 132.4, 132.3, 129.2, 129.2, 128.6, 128.5, 127.6, 127.6, 126.0, 126.0, 125.9, 125.8, 125.4, 125.3, 124.6, 124.6, 123.7 (q, J = 290.0, 289.5 Hz), 63.3 (q, J = 26.5, 26.0 Hz), 62.2 (q, J = 26.3, 26.2, 25.8 Hz), 58.7, 36.8, 36.4. IR (ATR, cm⁻¹) 3058, 2952, 2888, 2863, 2815, 1714, 1477, 1462, 1445, 1371, 1312, 1297, 1249, 1157, 1109, 1052, 1034, 968, 855, 791, 776, 753, 732, 689, 611, 587, 559, 440. HRMS m/z [M+H]+ calculated for C21H21NO2F3S+: 408.1245, found: 408.1241.

Synthesis of compound 93
3-(diphenylphosphanyl)-1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Compound 93 was prepared according to general procedure A from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and diphenylphosphane (53.3 uL, 0.75 mmol, 2.5 equiv), under argon atmosphere to afford a colorless oil (77.7 mg, 0.172 mmol, 57% yield). Rf = 0.53 (hexanes:ethyl acetate= 10:1). LRMS (EI, 70 eV): m/z (%): 452(1), 451(5), 408(1), 382(1), 312(12), 310(6), 281(3), 264(1), 236(3), 199(9), 187(9), 186(100), 185(6), 183(21), 171(8), 170(53), 168(8), 142(7), 141(37), 141(36), 121(24), 115(21), 109(6), 108(43), 91(5). 1H NMR (250 MHz, Chloroform-d) δ 8.22 (d, J = 7.9 Hz, 1H), 7.86 (dd, J = 23.7, 7.9 Hz, 2H), 7.65 – 7.48 (m, 3H), 7.39 (dt, J = 22.4, 7.9 Hz, 11H), 4.37 (q, J = 13.8 Hz, 2H), 3.42 (td, J = 14.3, 12.7, 5.3 Hz, 1H), 2.73 – 2.53 (m, 2H), 2.50 (s, 3H). 19F NMR (235 MHz, Chloroform-d) δ -67.93 (d, J = 5.8 Hz). 31P NMR (101 MHz, Chloroform-d) δ -22.55 (q, J = 5.8 Hz). 13C NMR (63 MHz, Chloroform-d) δ 138.9 (d, J = 13.8 Hz), 137.0 (d, J = 15.1 Hz), 134.0, 133.4, 133.4, 133.0, 132.6, 132.3, 129.9 (qd, J = 293.8, 9.5 Hz), 129.2, 128.8, 128.7, 128.6, 128.6, 128.5, 128.2, 127.5 (d, J = 1.6 Hz), 126.1, 125.7, 125.3, 124.5 (d, J = 2.3 Hz), 61.3 (qd, J = 25.6, 14.9 Hz), 57.8, 36.2, 26.6 (d, J = 14.4 Hz). IR (ATR, cm⁻¹...
1) 3068, 3053, 3014, 3000, 2953, 2924, 2854, 2807, 1952, 1884, 1812, 1738, 1726, 1597, 1587, 1510, 1480, 1434, 1374, 1256, 1226, 1157, 1100, 1069, 1025, 998, 907, 889, 845, 793, 780, 734, 693, 580, 540, 503, 476, 415. **HRMS** m/z [M+H]⁺ calculated for C_{27}H_{26}NF_{3}P⁺: 452.1755, found: 452.1757.

Synthesis of compound 94

Di(adamantan-1-yl)(3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl)phosphonium trifluoromethanesulfonate

Compound 94 was prepared according to **general procedure A** from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) and di(adamantan-1-yl)phosphane (90.7 mg, 0.75 mmol, 2.5 equiv), under argon atmosphere to afford a white solid (140 mg, 0.195 mmol, 65% yield). **Rf** = 0.73 (hexanes:diisopropyl ether= 10:1). **M.p.** = 210-214 °C. **¹H NMR** (250 MHz, Methylene Chloride-d$_2$) δ 8.30 – 7.84 (m, 3H), 7.85 – 7.24 (m, 4H), 4.75 (bs, 1H), 4.64 – 4.32 (m, 1H), 4.32 – 3.89 (m, 1H), 3.37 (d, J = 26.2 Hz, 2H), 2.88 (s, 1H), 2.76 (s, 3H), 2.41 – 1.33 (m, 24H), 1.09 (s, 6H). **¹³C NMR** (63 MHz, Methylene Chloride-d$_2$) δ 134.8, 128.6 (qd, J = 292.4, 14.7 Hz), 118.8 (q, J = 321.2 Hz), 65.9, 57.7, 56.2 (qd, J = 26.9, 5.2 Hz), 37.8 (d, J = 40.9 Hz), 37.4 (h, J = 17.0, 17.0, 15.9, 15.7, 14.9 Hz), 35.3 (d, J = 19.6 Hz), 27.7 (d, J = 18.8 Hz), 27.5 (d, J = 18.4 Hz), 22.9, 15.4, 11.0, 10.2. **IR** (ATR, cm⁻¹) 3067, 3050, 3040, 3007, 2913, 2856, 2817, 2413, 1745, 1716, 1452, 1347, 1304, 1269, 1249, 1221, 1166, 1140, 1107, 1046, 1027, 1002, 966, 943, 878, 844, 811, 803, 793, 781, 751, 634, 571, 516, 482, 448, 418. **HRMS** m/z [M+H]⁺ calculated for C_{35}H_{46}NOF_{3}P⁺: 568.3320, found: 568.3309.

Synthesis of compound 95

Diethyl 2-(3,3,3-trifluoro-2-(methyl(naphthalen-1-ylmethyl)amino)propyl)malonate

Compound 95 was prepared according to **general procedure A** with 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), diethyl malonate (114 uL, 0.75 mmol, 2.5 equiv) and sodium hydride (30 mg, 60 w% in oil, 0.75 mmol, 2.5 equiv) to afford a colorless oil (82.1 mg, 0.193 mmol, 64% yield). **Rf** = 0.33 (hexanes:ethyl acetate= 10:1). **LRMS** (EI, 70 eV): m/z (%): 425(1), 380(1), 357(3), 356(12), 284(2), 192(3), 173(2), 171(5), 170(34), 168(2), 142(14), 141(100), 139(4), 115(11). **¹H NMR** (250
MHz, Chloroform-\(d\) \(\delta\) 8.08 (d, \(J = 8.0\) Hz, 1H), 7.93 – 7.71 (m, 2H), 7.63 – 7.37 (m, 4H), 4.36 (d, \(J = 13.3\) Hz, 1H), 4.24 (d, \(J = 13.5\) Hz, 1H), 4.15 (q, \(J = 7.1\) Hz, 2H), 4.01 (dq, \(J = 10.8\), 7.1 Hz, 1H), 3.83 (dq, \(J = 10.8\), 7.1 Hz, 1H), 3.52 (dd, \(J = 9.1\), 5.1 Hz, 1H), 3.50 – 3.29 (m, 1H), 2.53 – 2.43 (m, 3H), 2.20 (dt, \(J = 9.9\), 4.5 Hz, 2H), 1.23 (t, \(J = 7.1\) Hz, 3H), 1.14 (t, \(J = 7.1\) Hz, 3H).

\(^{19}\)F NMR (235 MHz, Chloroform-\(d\)) \(\delta\) -67.43. \(^{13}\)C NMR (63 MHz, Chloroform-\(d\)) \(\delta\) 169.5, 168.6, 134.1, 133.6, 132.3, 128.7, 128.4 (q, \(J = 293.1\) Hz), 128.4, 127.9, 126.2, 125.8, 125.3, 124.2, 61.6, 61.3, 59.9 (q, \(J = 25.1\) Hz), 57.9, 47.8, 35.9, 127.9, 126.2, 125.8, 125.3, 124.2, 61.6, 61.3, 59.9 (q, \(J = 25.1\) Hz), 57.9, 47.8, 35.9, 25.6 (d, \(J = 1.9\) Hz), 14.1, 13.9. IR (ATR, cm\(^{-1}\)) 3050, 2983, 2941, 2905, 2871, 2810, 1730, 1510, 1466, 1448, 1371, 139, 1279, 1258, 1253, 1242, 1207, 1161, 1141, 1110, 1068, 1029, 849, 791, 776, 734, 705, 581, 518, 417. HRMS m/z [M+H]\(^+\) calculated for C\(_{22}\)H\(_{27}\)NO\(_4\)F\(_3\)\(^+\): 426.1892, found: 426.1895.

Synthesis of compound 96

1,1,1-trifluoro-\(4\)-(isoquinolin-1-yl)-N-methyl-N-(napthalen-1-yl)methybutan-2-amine

Compound 96 was prepared according to general procedure D from I (140 mg, 0.3 mmol), N-methyl-1-(napthalen-1-ylmethyl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), 1-methylisoquinoline \(4.4\) \(\mu\)L, 0.33 mmol, 1.1 equiv) and \(^n\)BuLi solution (216 \(\mu\)L, 1.6 M in hexanes, 0.345 mmol, 1.15 equiv) to afford a white solid (66.3 mg, 0.162 mmol, 54% yield). \(R_f = 0.50\) (hexanes:ethyl acetate= 5:1). M.p. = 133-135 °C. LRMS (EI, 70 eV): m/z (%): 355(1), 281(2), 207(2), 185(3), 185(3), 184(28), 184(12), 142(12), 141(100), 140(2), 139(3), 115(14), 73(2). \(\text{\(1\)}\)H NMR (300 MHz, Chloroform-\(d\)) \(\delta\) 8.35 (d, \(J = 8.6\) Hz, 1H), 7.84 (d, \(J = 8.5\) Hz, 1H), 7.80 (d, \(J = 8.5\) Hz, 1H), 7.51 – 7.34 (m, 3H), 7.24 – 7.10 (m, 4H), 7.04 – 6.95 (m, 1H), 4.12 (d, \(J = 12.8\) Hz, 1H), 4.11 (d, \(J = 14.5\) Hz, 1H), 3.97 (d, \(J = 14.8\) Hz, 1H), 3.96 (d, \(J = 12.8\) Hz, 1H), 3.64 – 3.47 (m, 1H), 3.20 – 2.93 (m, 3H), 2.92 – 2.81 (m, 2H), 2.75 (dd, \(J = 13.5\), 3.6 Hz, 1H), 2.34 (s, 3H). \(\text{\(19\)}\)F NMR (282 MHz, Chloroform-\(d\)) \(\delta\) -67.33 (d, \(J = 8.2\) Hz). \(\text{\(13\)}\)C NMR (75 MHz, Chloroform-\(d\)) \(\delta\) 160.5, 141.5, 136.0, 134.3, 134.1, 132.5, 129.9, 128.7, 128.4, 127.9, 127.4, 127.1, 126.9, 126.2 (q, \(J = 293.4\) Hz), 125.9, 125.7, 125.3, 125.0, 124.7, 119.4, 61.4 (q, \(J = 24.5\) Hz), 58.3, 36.1, 30.9, 24.4. IR (ATR, cm\(^{-1}\)) 3050, 3006, 2986, 2959, 2931, 2854, 2805, 1624, 1588, 1565, 1506, 1392, 1373, 1304, 1252, 1245, 1156, 1124, 1105, 1063, 844, 821, 803, 783, 777, 730, 698, 571, 536, 505, 461. HRMS m/z [M+H]\(^+\) calculated for C\(_{25}\)H\(_{24}\)N\(_2\)F\(_3\)\(^+\): 409.1886, found: 409.1889.
Synthesis of compound 97
1,1,1-trifluoro-N-methyl-N-(naphthalen-1-ylmethyl)-3-(5,6,7,8-tetrahydroquinolin-8-yl)propan-2-amine

Compound 97 was prepared according to general procedure D from 1 (140 mg, 0.3 mmol), N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv), 5,6,7,8-tetrahydroquinoline (43 µL, 0.33 mmol, 1.1 equiv) and nBuLi solution (216 µL, 1.6 M in hexanes, 0.345 mmol, 1.15 equiv) to afford a white solid (29.2 mg, 0.0733 mmol, 24% yield). Rf = 0.23 (hexanes:ethyl acetate= 10:1). M.p.= 102-105 °C. LRMS (EI, 70 eV): m/z (%): 398(1), 378(2), 355(1), 257(17), 237(23), 228(4), 171(4), 170(28), 146(19), 142(9), 141(61), 139(7), 134(10), 133(100), 132(59), 130(13), 118(9), 117(13), 115(26). 1H NMR (300 MHz, Chloroform-d) δ 8.42 (d, J = 4.7 Hz, 1H), 8.26 – 8.15 (m, 1H), 7.93 – 7.78 (m, 2H), 7.64 – 7.38 (m, 4H), 7.36 – 7.25 (m, 1H), 7.03 (dd, J = 7.6, 4.8 Hz, 1H), 4.48 (d, J = 13.3 Hz, 1H), 4.32 (d, J = 13.2 Hz, 1H), 3.31 (ddt, J = 16.4, 11.5, 5.8 Hz, 1H), 2.92 (tt, J = 11.2, 4.6 Hz, 1H), 2.79 – 2.72 (m, 4H), 2.59 (q, J = 6.1 Hz, 2H), 1.53 – 1.33 (m, 2H), 1.25 – 1.05 (m, 1H), 1.02 – 0.76 (m, 2H). (major diastereomer). 19F NMR (282 MHz, Chloroform-d) δ -66.30 (d, J = 8.3 Hz) minor diastereomer, -66.94 (d, J = 8.2 Hz), major diastereomer. 13C NMR (75 MHz, Chloroform-d) δ 159.8, 146.5, 137.2, 134.5, 134.1, 132.7, 129.0, 128.6, 128.4, 128.3, 128.1, 126.6, 126.0, 125.8, 125.3, 124.9, 123.7, 121.0, 58.6, 58.2, 57.9 (d, J = 24.2 Hz), 36.2, 35.7, 31.1, 29.1, 26.5, 19.8, (major diastereomer). IR (ATR, cm⁻¹) 3066, 3044, 3007, 2972, 2941, 2912, 2897, 2857, 2803, 1571, 1509, 1442, 1425, 1388, 1371, 1258, 1239, 1150, 1129, 1110, 1086, 1065, 1017, 1005, 966, 862, 845, 807, 793, 776, 726, 695, 580, 544, 418. HRMS m/z [M+H]⁺ calculated for C₂₄H₂₆N₂F₃+: 399.2043, found: 399.2046.

Synthesis of compound 98
1,1,1-trifluoro-3-(1H-indol-3-yl)-N-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine

Aziridinium intermediate solution was prepared according to general procedure A from 1 (140 mg, 0.3 mmol) and N-methyl-1-(naphthalen-1-yl)methanamine (51.4 mg, 0.3 mmol, 1 equiv) in acetonitrile. A separate, oven dried vial was charged with stirring bar, indole (42.6 mg, 0.36 mmol, 1.2 equiv) and sealed with Teflon septa and screw cap. Vial was evacuated and backfilled with argon (repeated three times), then toluene (2.5 mL) was added under argon atmosphere. To the stirred mixture, solution of Et₂Zn (1 M in toluene, 360 uL, 0.36 mmol, 1.2 equiv) was added dropwise under argon atmosphere at room temperature and stirring was continued for 1 hour. After
that, solution of aziridinium intermediate was added and the mixture was stirred at room
temperature for 16 hours. Purification was carried out according to general procedure A to afford
a colorless oil (79.9 mg, 0.209 mmol, 70% yield). $R_f = 0.43$ (hexanes:ethyl acetate= 5:1). $M_p =$
73-76 °C. LRMS (EI, 70 eV): m/z (%): 382(6), 252(11), 142(13), 141(100), 139(4), 131(5),
130(41), 115(13), 103(3), 77(4). 1H NMR (250 MHz, Chloroform-d) δ 7.78 (d, $J = 8.2$ Hz, 1H),
7.70 (d, $J = 8.0$ Hz, 1H), 7.67 – 7.58 (m, 1H), 7.48 – 7.17 (m, 6H), 7.11 (d, $J = 7.0$ Hz, 1H), 7.05
(d, $J = 7.4$ Hz, 1H), 6.74 (d, $J = 2.4$ Hz, 1H), 4.24 (d, $J = 13.6$ Hz, 1H), 4.16 (d, $J = 13.4$ Hz, 1H),
3.80 – 3.52 (m, 1H), 3.15 (s, 1H), 3.12 (s, 1H), 2.57 – 2.43 (m, 3H). ^{19}F NMR (235 MHz,
Chloroform-d) δ -67.64. ^{13}C NMR (75 MHz, Chloroform-d) δ 136.2, 134.1, 133.8, 132.2, 129.1
(d, $J = 292.8$ Hz), 128.2, 128.1, 127.5, 127.3, 125.4, 125.4, 125.0, 124.5, 123.1, 122.0, 119.5, 118.4,
111.8, 111.2, 63.8 (q, $J = 24.0$ Hz), 58.6 (d, $J = 1.4$ Hz), 35.6, 22.5 (q, $J = 1.9$ Hz). IR (ATR, cm$^{-1}$
) 3421, 3278, 3054, 2939, 2857, 2833, 1704, 1619, 1597, 1509, 1456, 1354, 1336, 1251, 1164,
1137, 1102, 1065, 1011, 859, 791, 774, 739, 692, 586, 458, 423. HRMS m/z [M+H]$^+$ calculated
for C$_{23}$H$_{22}$N$_2$F$_3$+: 383.1730, found: 383.1730.

Supplementary Figure 11: Unsuccessful substrates under conditions of aziridinium ion
intermediate generation

Following product was observed by GC-MS:
Supplementary Figure 12: Ethylene diamine and trifluoroethylamine moieties in natural products and drugs

1) Natural products with diamine structure

- L-tupinic acid
- L-mimosine
- L-willardine
- L-quisqualic acid

2) Drug molecules with ethylene diamine motif

- Aslimadoline: e-opioid receptor agonist
- Thonzylamine (X= OMe, Y= N)
- Mepyramine (X= OMe, Y= CH)
- Chloropyramine (X= Cl, Y= CH)
- Triprorenamine (X= H, Y= CH)
- Antihistamines
- Encorafenib: oncology

3) Current drug candidate containing trifluoromethyl amine scaffold

- Selatralisib: autoimmune diseases
NMR & IR spectra
Supplementary Figure 13: 1H-NMR for compound 1

1H NMR (250 MHz, Acetonitrile$_d_3$) δ 8.20 (dd, $J = 7.8, 4.2$ Hz, 2H), 7.51 – 7.22 (m, 4H).
Supplementary Figure 14: 19F NMR for compound 1

19F NMR (235 MHz, Acetonitrile$_d_3$) δ -64.53, -79.40, -105.44.
Supplementary Figure 15: 13C NMR for compound 1

13C NMR (63 MHz, Acetonitrile-d_3) δ 166.4 (d, $J = 254.6$ Hz), 145.1 (q, $J = 4.7$ Hz), 139.9 (d, $J = 9.5$ Hz), 121.9 (q, $J = 321.0$ Hz), 121.2 (q, $J = 273.8$ Hz), 111.8 (q, $J = 39.8$ Hz), 108.3 (d, $J = 3.2$ Hz).
Supplementary Figure 16: IR for compound 1
Supplementary Figure 17: 1H-NMR for compound A1

1H NMR (250 MHz, Chloroform-d) δ 7.15 (d, $J = 8.5$ Hz, 2H), 6.77 (d, $J = 8.6$ Hz, 2H), 5.84 (dtt, $J = 6.9, 5.9$ Hz, 1H), 5.11 (dd, $J = 17.2, 1.7$ Hz, 1H), 5.02 (dd, $J = 10.3, 1.2$ Hz, 1H), 3.69 (s, 3H), 3.63 (s, 2H), 3.17 (bs, 2H), 1.52 (bs, 1H).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{hnmr_spectrum}
\caption{Supplementary Figure 17: 1H-NMR spectrum for compound A1.}
\end{figure}
Supplementary Figure 18: ^{13}C NMR for compound A1

^{13}C NMR (63 MHz, CDCl₃) δ 158.6, 136.8, 132.3, 129.3, 115.9, 113.7, 55.1, 52.6, 51.6.
Supplementary Figure 19: 1H-NMR for compound A2

1H NMR (250 MHz, Chloroform-d) δ 7.2 (d, $J = 8.6$ Hz, 2H), 6.8 (d, $J = 8.7$ Hz, 2H), 3.7 (s, 3H), 3.6 (s, 3H), 3.5 (d, $J = 12.7$ Hz, 1H), 3.2 (t, $J = 7.2$ Hz, 1H), 1.8 – 1.6 (m, 2H), 1.4 (dd$J = 7.5$, 6.5 Hz, 2H), 0.8 (d, $J = 6.6$ Hz, 3H), 0.8 (d, $J = 6.6$ Hz, 3H).
Supplementary Figure 20: $^{13}\text{C} NMR$ for compound A2

$^{13}\text{C} NMR$ (63 MHz, CDC$_3$) δ 176.5, 158.7, 132.0, 129.5, 113.7, 59.1, 55.2, 51.6, 42.8, 24.9, 22.8, 22.2.
Supplementary Figure 21: 1H-NMR for compound A3

1H NMR (250 MHz, Chloroform-d) δ 7.25 – 7.08 (m, 7H), 6.78 (d, $J = 8.7$ Hz, 2H), 4.06 (q, $J = 7.1$ Hz, 2H), 3.72 (d, $J = 12.7$ Hz, 1H), 3.71 (s, 3H), 3.55 (d, $J = 12.9$ Hz, 1H), 3.49 (t, $J = 7.0$ Hz, 1H), 2.92 (d, $J = 7.0$ Hz, 2H), 1.89 (s, 1H), 1.11 (q, $J = 7.1$ Hz, 3H).
Supplementary Figure 22: 13C NMR for compound A3

13C NMR (63 MHz, CDC$_3$) δ 174.4, 158.6, 137.3, 131.6, 129.2, 129.2, 128.5, 128.5, 113.6, 61.8, 60.4, 55.0, 51.3, 39.7, 14.1.
Supplementary Figure 23: 1H-NMR for compound A4

1H NMR (250 MHz, Chloroform-d) δ 7.25 (d, J = 8.3 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 3.79 (d, J = 0.9 Hz, 3H), 3.70 (s, 2H), 2.14 – 2.04 (m, 3H), 1.76 – 1.56 (m, 12H), 1.16 (s, 1H).
Supplementary Figure 24: 13C NMR for compound A4

13C NMR (63 MHz, CDCl$_3$) δ 158.5, 133.9, 129.5, 113.9, 77.7, 77.2, 76.7, 55.3, 50.9, 44.6, 43.0, 36.9, 29.8.
Supplementary Figure 25: 1H-NMR for compound A5

1H NMR (250 MHz, Chloroformd) δ 7.14 (d, $J = 8.6$ Hz, 2H), 6.77 (d, $J = 8.6$ Hz, 2H), 3.68 (s, 2H), 3.67 (s, 3H), 2.05 (tt, $J = 6.3, 3.8$ Hz, 1H), 1.80 (s, 1H), 0.45 – 0.23 (m, 4H).
Supplementary Figure 26: 13C NMR for compound A5

13C NMR (63 MHz, CDC) δ 158.3, 132.6, 129.1, 113.5, 54.9, 52.9, 29.8, 6.2.
Supplementary Figure 27: 1H-NMR for compound A6

1H NMR (250 MHz, Chloroform-d) δ 7.4 – 7.1 (m, 7H), 6.9 (d, $J = 8.9$ Hz, 2H), 3.9 – 3.7 (m, 4H), 3.7 – 3.5 (m, 2H), 1.6 (s, 1H), 1.4 (d, $J = 6.6$ Hz, 3H).
Supplementary Figure 28: 13C NMR for compound A6

13C NMR (63 MHz, CDCl$_3$) δ 158.6, 145.7, 132.8, 129.3, 128.5, 126.9, 126.7, 113.8, 57.4, 55.2, 51.0, 24.5.
Supplementary Figure 29: $^1\text{H}-\text{NMR}$ for compound A7

^1H NMR (250 MHz, Chloroform-d) δ 7.20 (d, $J = 8.5$ Hz, 2H), 6.82 (d, $J = 8.5$ Hz, 2H), 4.14 (q, $J = 7.1$ Hz, 2H), 3.74 (s, 3H), 3.69 (s, 2H), 3.34 (s, 2H), 2.18 (s, 1H), 1.22 (d, $J = 7.1$ Hz, 3H).
Supplementary Figure 30: 13C NMR for compound A7

13C NMR (63 MHz, CDCl$_3$) δ 172.3, 158.8, 131.5, 129.4, 113.8, 60.6, 55.1, 52.6, 49.9, 14.1.
Supplementary Figure 31: 1H-NMR for compound A8

1H NMR (250 MHz, Chloroform-d) \(\delta \) 7.14 (d, \(J = 8.5 \) Hz, 2H), 6.76 (d, \(J = 8.6 \) Hz, 2H), 3.69 (s, 3H), 3.63 (s, 2H), 2.52 (t, \(J = 7.2 \) Hz, 2H), 1.60 (s, 1H), 1.40 (q, \(J = 7.0, 6.4 \) Hz, 2H), 1.29 - 1.07 (m, 6H), 0.79 (t, \(J = 6.4 \) Hz, 3H).
Supplementary Figure 32: 13C NMR for compound A8

13C NMR (63 MHz, CDCl$_3$) δ 158.6, 132.7, 129.3, 113.8, 55.2, 53.5, 49.4, 31.8, 30.1, 27.1, 22.7, 14.1.
Supplementary Figure 33: 1H-NMR for compound A9

1H NMR (250 MHz, Chloroform-d) δ 7.16 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.6 Hz, 2H), 3.70 (s, 3H), 3.61 (q, J = 12.8 Hz, 2H), 2.56 (dq, J = 12.2, 7.4, 6.5 Hz, 1H), 1.39 (s, 2H), 1.33 – 1.10 (m, 7H), 0.99 (d, J = 6.3 Hz, 3H), 0.81 (t, J = 6.6 Hz, 3H).
Supplementary Figure 34: 13C NMR for compound A9

13C NMR (63 MHz, CDCl₃) δ 158.6, 133.0, 129.3, 113.8, 55.2, 52.5, 50.8, 37.1, 32.1, 25.7, 22.7, 20.3, 14.1.
Supplementary Figure 35: 1H-NMR for compound A10

1H NMR (250 MHz, Chloroform) δ 7.14 (d, $J = 8.5$ Hz, 2H), 6.76 (d, $J = 8.5$ Hz, 2H), 3.68 (s, 3H), 3.62 (s, 2H), 2.51 (t, $J = 7.2$ Hz, 2H), 1.67 (s, 1H), 1.49 – 1.32 (m, 2H), 1.18 (s, 10H), 0.79 (t, $J = 6.1$ Hz, 3H).
Supplementary Figure 36: 13C NMR for compound A10

13C NMR (63 MHz, CDCl$_3$) δ 158.6, 132.6, 129.3, 113.7, 55.2, 53.5, 49.4, 31.9, 30.1, 29.6, 29.3, 27.4, 22.7, 14.1.
Supplementary Figure 37: 1H-NMR for compound A11

1H NMR (250 MHz, Chloroform-d) δ 7.29 (d, $J = 8.5$ Hz, 2H), 7.19 (t, $J = 7.9$ Hz, 2H), 6.89 (d, $J = 8.6$ Hz, 2H), 6.74 (t, $J = 7.3$ Hz, 1H), 6.64 (d, $J = 7.7$ Hz, 2H), 4.24 (s, 2H), 3.93 (s, 1H), 3.79 (s, 3H).

![NMR spectrum](image)
Supplementary Figure 38: 13C NMR for compound A11

13C NMR (63 MHz, CDCl$_3$) δ 158.9, 148.2, 131.4, 129.3, 128.9, 117.6, 114.1, 113.0, 55.3, 47.8.
Supplementary Figure 39: 1H-NMR for compound A12

1H NMR (250 MHz, Chloroform-d) δ 7.51 - 7.39 (m, 1H), 7.35 (t, $J = 2.1$ Hz, 1H), 7.27 - 7.11 (m, 3H), 6.83 (dd, $J = 6.4$, 2.1 Hz, 3H), 4.44 (d, $J = 26.7$ Hz, 1H), 4.22 (s, 2H), 3.75 (s, 3H).
Supplementary Figure 40: 13C NMR for compound A12

13C NMR (63 MHz, CDCl$_3$) δ 159.2, 149.4, 148.8, 130.0, 129.8, 128.9, 118.9, 114.3, 112.1, 106.6, 55.3, 47.6.
Supplementary Figure 41: 1H-NMR for compound 3-phenylprop-2-yn-1-ol

1H NMR (250 MHz, Chloroform-d) δ 7.38 (dd, $J = 6.8, 2.8$ Hz, 2H), 7.23 (dd, $J = 5.1, 1.8$ Hz, 3H), 4.44 (s, 2H), 2.77 (s, 1H).
Supplementary Figure 42: ^{13}C NMR for 3-phenylprop-2-yn-1-ol

^{13}C NMR (63 MHz, CDCl$_3$) δ 131.7, 128.5, 128.3, 122.6, 87.4, 85.6, 51.4.
Supplementary Figure 43: 1H-NMR for compound 3-phenylprop-2-yn-1-yl 4-methylbenzenesulfonate

1H NMR (250 MHz, Chloroform-d) δ 7.77 (d, $J = 8.4$ Hz, 2H), 7.31 – 7.09 (m, 7H), 4.87 (s, 2H), 2.30 (s, 3H).
Supplementary Figure 44: 13C NMR for 3-phenylprop-2-yn-1-yl 4-methylbenzenesulfonate

13C NMR (63 MHz, CDCl$_3$) δ 145.1, 133.5, 131.8, 129.9, 129.1, 128.3, 128.2, 121.5, 89.0, 80.7, 58.7, 21.6.
Supplementary Figure 45: 1H-NMR for compound A13

1H NMR (250 MHz, Methylene Chloride) δ 7.3 – 7.2 (m, 2H), 7.2 – 7.1 (m, 3H), 3.4 (s, 2H), 2.4 (d, $J = 6.7$ Hz, 2H), 1.6 (d, $J = 13.3$, 6.7 Hz, 1H), 1.2 (s, 1H), 0.8 (s, 3H), 0.8 (s, 3H).
Supplementary Figure 46: 13C NMR for compound A13

13C NMR (63 MHz, CDCl3) δ 132.0, 128.7, 128.4, 124.0, 89.0, 83.3, 57.5, 54.7, 54.3, 53.8, 53.4, 53.0, 39.6, 28.9, 21.0.
Supplementary Figure 47: 1H-NMR for compound A14

1H NMR (250 MHz, Methylene Chloride) δ 7.4 (dq, $J = 8.3$, 3.4, 2.6 Hz, 2H), 7.4 – 7.3 (m, 3H), 3.7 (s, 2H), 2.7 (tt, $J = 10.0$, 3.8 Hz, 1H), 2.0 – 1.6 (m, 5H), 1.5 – 1.0 (m, 6H).
Supplementary Figure 48: 13C NMR for compound A14

13C NMR (63 MHz, CDCl$_3$) δ 132.0, 128.7, 128.3, 124.0, 89.1, 83.0, 55.7, 54.7, 54.3, 53.8, 53.4, 53.0, 36.4, 33.6, 36.7, 25.3.
Supplementary Figure 49: \(^1H \)-NMR for compound A15

\(^1H \) NMR (250 MHz, Chloroform-d) \(\delta \) 7.42 – 7.30 (m, 2H), 7.26 – 7.15 (m, 3H), 2.73 (d, \(J = 6.8 \) Hz, 2H), 1.87 (d, \(J = 11.9 \) Hz, 2H), 1.70 – 1.51 (m, 5H), 1.52 – 0.92 (m, 12H), 0.92 – 0.70 (m, 3H).
Supplementary Figure 50: 13C NMR for compound A15

13C NMR (63 MHz, CDCl$_3$) δ 131.6, 128.2, 127.7, 123.8, 93.6, 84.5, 55.1, 43.3, 38.3, 31.8, 30.7, 27.2, 26.0, 23.1, 22.7, 14.1.
Supplementary Figure 51: 1H-NMR for compound A16

1H NMR (250 MHz, Chloroform-d) δ 7.18 (d, $J = 8.4$ Hz, 2H), 6.78 (d, $J = 8.5$ Hz, 2H), 3.73 (s, 2H), 3.70 (s, 3H), 3.32 (d, $J = 2.3$ Hz, 2H), 2.19 (t, $J = 2.0$ Hz, 1H), 1.43 (s, 1H).
Supplementary Figure 52: 13C NMR for compound A16

13C NMR (63 MHz, CDCl$_3$): 13C NMR (63 MHz, CDCl$_3$) 158.8, 131.5, 129.6, 113.8, 82.2, 71.5, 55.2, 51.6, 37.2.
Supplementary Figure 53: 1H-NMR for compound A17

1H NMR (250 MHz, Methanol-d$_4$) δ 7.23 (ddt, J = 14.8, 10.4, 7.0 Hz, 5H), 4.04 (dd, J = 8.8, 7.0 Hz, 2H), 3.78 – 3.47 (m, 3H), 2.74 (d, J = 2.9 Hz, 4H), 1.43 (s, 9H).
Supplementary Figure 54: 13C NMR for compound A17

13C NMR (63 MHz, MeOD) δ 158.1, 140.9, 129.6, 127.3, 80.8, 49.5, 48.6, 37.0, 28.7.
Supplementary Figure 55: IR for compound A17
Supplementary Figure 56: 1H-NMR for compound A18

1H NMR (250 MHz, Chloroform-d) δ 4.45 (s, 1H), 3.89 – 2.80 (m, 4H), 2.53 (bs, 1H), 0.83 (s, 9H), -0.01 (s, 6H).
Supplementary Figure 57: 13C NMR for compound A18

13C NMR (63 MHz, CDCl$_3$) δ 71.4, 58.1, 25.9, 18.1, -4.9.
Supplementary Figure 58: 1H-NMR for compound A19

1H NMR (250 MHz, Acetonitrile-d_3) δ 7.32 (bs, 2H), 4.34 – 4.18 (m, 1H), 3.70 (dd, $J = 16.6$, 8.7 Hz, 1H), 3.70 (s, 3H).
Supplementary Figure 59: 19F NMR for compound A19

19F NMR (235 MHz, Acetonitrile) δ -79.28.
Supplementary Figure 60: 13C NMR for compound A19

13C NMR (63 MHz, Acetonitrile-d_3) δ 172.1, 121.5 ($q, J = 318.7$ Hz), 53.3, 50.0, 35.4.
Supplementary Figure 61: 1H-NMR for compound A20

1H NMR (250 MHz, Chloroform-d) δ 3.52 (dt, $J = 7.3, 3.7$ Hz, 1H), 2.83 (dd, $J = 12.2$ Hz, 1H), 2.75 – 2.62 (m, 1H), 2.60 – 2.34 (m, 2H), 2.20 (bs, 1H), 1.81 – 1.54 (m, 2H), 1.33 (m, 12.0 Hz, 2H), 0.88 – 0.68 (m, 9H), 0.01 – 0.13 (m, 6H).
Supplementary Figure 62: ^{13}C NMR for compound A20

^{13}C NMR (63 MHz, CDCl$_3$) δ 67.9, 54.0, 46.1, 33.8, 25.8, 24.4, 18.1, -4.7, -4.8.
Supplementary Figure 63: 1H-NMR for compound A21

1H NMR (250 MHz, Chloroform-d) δ 3.47 – 3.21 (m, 2H), 3.06 ($d,J=11.5$ Hz, 1H), 2.93 ($d,J=12.1$ Hz, 1H), 2.46 ($dtdJ=11.8, 2.7$ Hz, 1H), 2.34 – 2.13 (m, 1H), 1.91 (s, 1H), 1.76 – 1.48 (m, 3H), 1.48 – 1.24 (m, 1H), 1.01 ($q,J=11.9$, 3.9 Hz, 1H), 0.82 (s, 9H), -0.03 ($d,J=3.7$ Hz, 6H).
Supplementary Figure 64: $^{13}\text{C\ NMR for compound A21}$

$^{13}\text{C\ NMR (63 MHz, CDCl}_3) \delta$ 66.6, 50.2, 47.2, 40.0, 27.8, 26.3, 26.0, 18.3, -5.4, -5.4.
Supplementary Figure 65: 1H-NMR for compound 6

1H NMR (250 MHz, Acetonitrile-d$_3$) δ 8.29 – 8.07 (m, 1H), 8.03 – 7.76 (m, 2H), 7.67 – 7.32 (m, 4H), 3.97 (s, 2H), 2.49 (pdd $\text{J}_1 = 5.6$, $\text{J}_2 = 3.0$ Hz, 1H), 2.12 (d $\text{J}_1 = 3.1$ Hz, 1H), 1.87 (d $\text{J}_1 = 6.4$ Hz, 1H).
Supplementary Figure 66: 19F NMR for compound 6

19F NMR (235 MHz, Acetonitrile) δ -71.67.
Supplementary Figure 67: 13C NMR for compound 6

13C NMR (63 MHz, Acetonitrile d_x) δ 135.1, 134.6, 132.5, 129.4, 129.0, 127.0, 127.0, 126.8, 126.4, 125.7 (d, $J = 271.3$ Hz), 125.0, 37.9 (q, $J = 39.0$ Hz), 30.8 (q, $J = 1.9$ Hz).
Supplementary Figure 68: 1H-NMR for compound 7

1H NMR (250 MHz, Chloroform-d) δ 7.2 (t, $J = 8.6$, 7.5 Hz, 2H), 7.1 (t, $J = 8.6$, 7.4 Hz, 2H), 6.8 – 6.6 (m, 6H), 4.5 (p(d$t = 8.4$, 4.0 Hz, 1H), 3.9 (d,$J = 15.4$, 4.0 Hz, 1H), 3.7 (dd,$J = 15.4$, 8.5 Hz, 1H), 2.9 (s, 6H).
Supplementary Figure 69: 19F NMR for compound 7

19F NMR (235 MHz, CDCl$_3$) δ -70.01.
Supplementary Figure 70: 13C NMR for compound 7

13C NMR (63 MHz, Chloroform-d) δ 149.9, 148.2, 129.7, 129.3, 126.0 (q, $J = 288.8$ Hz), 119.0, 117.5, 114.5, 112.6, 59.2 (q, $J = 26.3$ Hz), 49.4 (d, $J = 0.9$ Hz), 39.5, 32.3 (d, $J = 1.6$ Hz).
Supplementary Figure 71: IR for compound 7
Supplementary Figure 72: 1H-NMR for compound 8

1H NMR (250 MHz, Chloroform-d) δ 7.22 – 7.02 (m, 4H), 6.78 – 6.54 (m, 6H), 4.36 (td, $J = 7.9, 4.6$ Hz, 1H), 3.77 – 3.53 (m, 2H), 3.42 – 3.16 (m, 4H), 1.08 (q, $J = 6.9$ Hz, 3H), 1.01 (t, $J = 7.1$ Hz, 3H).
Supplementary Figure 73: $^{19}\text{F NMR for compound 8}$

$^{19}\text{F NMR (235 MHz, Chloroform)}\delta -69.86.$
Supplementary Figure 74: 13C NMR for compound 8

13C NMR (63 MHz, Chloroform-d) δ 147.9, 129.7, 129.2, 126.4 (q, $J = 288.3$ Hz), 119.4, 117.7, 116.6, 113.6, 60.6 (q, $J = 25.5$ Hz), 48.6, 46.5, 39.1, 13.1, 12.1.
Supplementary Figure 75: IR for compound 8
Supplementary Figure 76: 1H-NMR for compound 9

1H NMR (250 MHz, Methanol-d_4) δ 7.15 – 6.92 (m, 4H), 6.74 – 6.41 (m, 4H), 4.57 (ddt, $J = 16.7$, 8.5, 4.2 Hz, 1H), 3.78 (dd$J = 14.0$, 9.5 Hz, 2H), 3.61 (q$J = 8.7$ Hz, 1H), 3.48 – 3.32 (m, 2H), 3.26 (q$J = 8.9$ Hz, 1H), 2.99 (t$J = 8.7$ Hz, 2H), 2.89 – 2.65 (m, 2H).
Supplementary Figure 77: 19F NMR for compound 9

19F NMR (235 MHz, Methanol-d$_4$) δ -72.00.
Supplementary Figure 78: 13C NMR for compound 9

13C NMR (63 MHz, Methanol-d$_4$) δ 152.8, 151.7, 131.0, 129.8, 128.3, 128.2, 127.5 (q, $J = 287.1$ Hz), 125.6, 125.5, 119.2, 118.9, 107.5, 106.9, 56.6 (q, $J = 27.0$ Hz), 54.5, 48.1, 46.3 (q, $J = 1.9$ Hz), 29.3, 29.1.
Supplementary Figure 79: IR for compound 9
Supplementary Figure 80: 1H-NMR for compound 10

1H NMR (250 MHz, Chloroform-d) δ 7.14 (t, $J = 7.8$ Hz, 1H), 7.07 – 6.90 (m, 3H), 6.76 – 6.57 (m, 3H), 6.52 (d, $J = 8.3$ Hz, 1H), 4.76 (tt, $J = 12.9$, 6.3 Hz, 1H), 3.88 (dd, $J = 15.3$, 4.4 Hz, 1H), 3.71 (dd, $J = 15.3$, 7.6 Hz, 1H), 3.39 (dt, $J = 16.3$, 5.5 Hz, 4H), 2.84 (h, $J = 9.8$ Hz, 2H), 2.72 (t, $J = 6.4$ Hz, 2H), 2.14 – 1.74 (m, 4H).
Supplementary Figure 81: 19F NMR for compound 10

19F NMR (235 MHz, Chloroform) δ -69.3.
Supplementary Figure 82: 13C NMR for compound 10

13C NMR (63 MHz, Chloroform-d_2) δ 144.8, 144.2, 129.9, 129.6, 127.5, 127.2, 124.8 (q, $J = 289.1$ Hz), 123.7, 123.2, 117.7, 116.6, 112.0, 110.0, 56.3 (q, $J = 25.2$ Hz), 50.8, 48.3, 43.6, 28.2, 28.1, 22.2, 22.1.
Supplementary Figure 83: IR for compound 10
Supplementary Figure 84: 1H-NMR for compound II

1H NMR (250 MHz, Chloroform$_d$) δ 7.04 – 6.72 (m, 8H), 4.60 ($hJ = 8.5$ Hz, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.66 (s, 1H), 3.63 (s, 1H), 2.87 (s, 6H).
Supplementary Figure 85: 19F NMR for compound 11

19F NMR (235 MHz, Chloroformδ) δ -68.26.
Supplementary Figure 86: ^{13}C NMR for compound 11

^{13}C NMR (63 MHz, Chloroform-d) δ 152.7, 151.5, 140.5, 129.3 (q, $J = 290.6$ Hz), 122.5, 122.1, 121.1, 121.0, 120.4, 111.8, 111.7, 60.1 (q, $J = 25.3$ Hz), 55.4 (d, $J = 2.4$ Hz), 51.1, 41.1, 34.0 (d, $J = 1.1$ Hz).
Supplementary Figure 87: IR for compound 11
Supplementary Figure 88: 1H-NMR for compound 12

1H NMR (250 MHz, Chloroform-d) δ 7.14 – 7.01 (m, 1H), 6.96 (t, $J = 7.8$ Hz, 1H), 6.56 – 6.49 (m, 2H), 6.47 – 6.36 (m, 3H), 6.31 – 6.27 (m, 1H), 4.47 (p, $J = 8.4$, 4.1 Hz, 1H), 3.82 (dd, $J = 15.4$, 4.1 Hz, 1H), 3.59 (dd, $J = 15.4$, 8.4 Hz, 1H), 2.83 (s, 6H), 2.20 (s, 3H), 2.10 (s, 3H).
Supplementary Figure 89: 19F NMR for compound 12

19F NMR (235 MHz, Chloroform) δ -69.99.
Supplementary Figure 90: 13C NMR for compound 12

13C NMR (63 MHz, Chloroform-d) δ 150.0, 148.1, 139.4, 139.0, 129.5, 129.1, 126.0 (q, $J = 288.8$ Hz), 119.9, 118.4, 115.4, 113.5, 111.6, 109.9, 58.9 (q, $J = 26.2$ Hz), 49.4, 39.8, 32.3 (q, $J = 1.6$ Hz), 22.0, 21.8.
Supplementary Figure 91: IR for compound 12
Supplementary Figure 92: 1H-NMR for compound 13

1H NMR (250 MHz, Chloroform-d) δ 7.21 (dd, $J = 8.2$, 7.1 Hz, 1H), 7.09 (dd, $J = 8.2$, 7.6 Hz, 1H), 6.56 – 6.27 (m, 6H), 4.51 (pdd, $J = 8.3$, 4.0 Hz, 1H), 3.90 (dd, $J = 15.5$, 3.9 Hz, 1H), 3.71 (dd, $J = 15.5$, 8.6 Hz, 1H), 2.93 (s, 3H), 2.92 (s, 3H).
Supplementary Figure 93: ^{19}F NMR for compound 13

^{19}F NMR (235 MHz, Chloroform) δ -70.20 (s, 3F), -111.62 (s, 1F), -111.91 (s, 1F).
Supplementary Figure 94: 13C NMR for compound 13

13C NMR (63 MHz, Chloroform-d) δ 164.5 (d, $J = 243.1$ Hz), 164.0 (d, $J = 243.6$ Hz), 151.5 (d, $J = 10.2$ Hz), 149.8 (d, $J = 10.5$ Hz), 130.8 (d, $J = 10.3$ Hz), 130.4 (d, $J = 10.1$ Hz), 125.7 (q, $J = 288.2$ Hz), 109.8 (d, $J = 2.5$ Hz), 107.9 (d, $J = 2.4$ Hz), 105.7 (d, $J = 21.4$ Hz), 104.1 (d, $J = 21.6$ Hz), 101.6 (d, $J = 26.0$ Hz), 99.7 (d, $J = 26.2$ Hz), 58.9 (q, $J = 26.9$ Hz), 49.2, 39.6, 32.5 (q, $J = 1.7$ Hz).
Supplementary Figure 95: IR for compound 13
Supplementary Figure 96: 1H-NMR for compound 14

1H NMR (250 MHz, Chloroform-d) δ 7.18 (t, J = 8.1 Hz, 1H), 7.07 (t, J = 8.1 Hz, 1H), 6.77 (dt, J = 7.9, 2.2 Hz, 2H), 6.70 – 6.52 (m, 3H), 6.48 (dd, J = 8.4, 2.6 Hz, 1H), 4.47 (qd, J = 8.3, 4.0 Hz, 1H), 3.88 (dd, J = 15.5, 4.0 Hz, 1H), 3.71 (dd, J = 15.5, 8.6 Hz, 1H), 2.91 (s, 6H).
Supplementary Figure 97: 19F NMR for compound 14

19F NMR (235 MHz, Chloroform) δ -70.13.
Supplementary Figure 98: 13C NMR for compound 14

13C NMR (63 MHz, Chloroform-d) δ 150.8, 148.9, 135.7, 135.3, 130.7, 125.6 (q, $J = 288.2$ Hz), 119.2, 117.9, 114.5, 112.9, 112.5, 110.8, 58.8 (q, $J = 26.9$ Hz), 49.4, 39.8, 32.5.
Supplementary Figure 99: IR for compound 14
Supplementary Figure 100: 1H-NMR for compound 15

1H NMR (250 MHz, Chloroform) δ 7.13 (d, $J = 8.5$ Hz, 2H), 7.03 (d, $J = 8.5$ Hz, 2H), 6.69 (d, $J = 8.5$ Hz, 2H), 6.62 (d, $J = 8.6$ Hz, 2H), 4.54 (p, $J = 8.4$, 4.0 Hz, 1H), 3.91 (dd, $J = 15.3$, 4.0 Hz, 1H), 3.72 (dd, $J = 15.3$, 8.6 Hz, 1H), 3.04 – 2.86 (m, 6H), 2.34 (s, 3H), 2.28 (s, 3H).
Supplementary Figure 101: 19F NMR for compound 15

19F NMR (235 MHz, Chloroform) δ -69.96.
Supplementary Figure 102: 13C NMR for compound 15

13C NMR (63 MHz, Chloroform-d) δ 147.8, 146.1, 130.2, 129.8, 128.2, 126.7, 126.1 (q, $J = 289.4$ Hz), 114.8, 112.9, 59.5 (q, $J = 25.9$ Hz), 49.6, 39.7, 32.3 (q, $J = 1.4$ Hz), 20.4.

![Carbon-13 NMR spectrum](image-url)
Supplementary Figure 103: IR for compound 15
Supplementary Figure 104: 1H-NMR for compound 16

1H NMR (250 MHz, Chloroform-d) δ 7.27 – 7.17 (m, 2H), 7.17 – 7.07 (m, 2H), 6.61 (d, $J = 9.1$ Hz, 2H), 6.55 (d, $J = 9.1$ Hz, 2H), 4.44 (ddq, $J = 12.1$, 8.3, 4.2 Hz, 1H), 3.88 (dd, $J = 15.5$, 3.8 Hz, 1H), 3.70 (dd, $J = 15.5$, 8.7 Hz, 1H), 2.91 (s, 6H).
Supplementary Figure 105: $^{19}\text{F NMR for compound 16}$

$^{19}\text{F NMR (235 MHz, Chloroform)} \delta -70.13$.
Supplementary Figure 106: 13C NMR for compound 16

13C NMR (63 MHz, Chloroform-d) δ 148.4, 146.6, 129.5, 129.2, 125.7 (q, $J = 288.4$ Hz), 124.1, 122.7, 115.6, 113.8, 59.1 (q, $J = 26.6$ Hz), 49.3, 39.7, 32.4 (q, $J = 1.4$ Hz).
Supplementary Figure 107: IR for compound 16
Supplementary Figure 108: 1H-NMR for compound 17

1H NMR (250 MHz, Chloroform-d) δ 7.25 (d, $J = 8.8$ Hz, 2H), 7.16 (d, $J = 8.7$ Hz, 2H), 6.46 (d, $J = 8.9$ Hz, 2H), 6.40 (d, $J = 8.9$ Hz, 2H), 4.34 (d, $J = 8.2$, 3.7 Hz, 1H), 3.78 (d, $J = 15.4$, 3.7 Hz, 1H), 3.60 (d, $J = 15.5$, 8.7 Hz, 1H), 2.80 (s, 6H).
Supplementary Figure 109: $^{19}\text{F NMR for compound 17}$

$^{19}\text{F NMR (235 MHz, Chloroformδ) } \delta -70.16$.
Supplementary Figure 110: 13C NMR for compound 17

1H NMR (63 MHz, Chloroform-d) δ 148.8, 146.8, 132.4, 132.1, 123.3 (q, $J = 289.3, 288.6$ Hz), 116.0, 114.2, 111.4, 109.9, 58.9 (q, $J = 26.7$ Hz), 49.3, 39.7, 32.4.
Supplementary Figure 111: IR for compound 17
Supplementary Figure 112: 1H-NMR for compound 18

1H NMR (250 MHz, Chloroform-d) δ 6.89 (d, $J = 8.8$ Hz, 2H), 6.78 (d, $J = 9.1$ Hz, 2H), 6.73 (d, $J = 8.4$ Hz, 2H), 6.65 (d, $J = 8.9$ Hz, 2H), 4.39 (td, $J = 8.2$, 3.7 Hz, 1H), 3.80 (s, 3H), 3.78 – 3.60 (m, 5H), 2.91 (bs, 6H).
Supplementary Figure 113: 19F NMR for compound 18

19F NMR (235 MHz, Chloroform) δ -69.95.
Supplementary Figure 114: ^{13}C NMR for compound 18

^{13}C NMR (63 MHz, Chloroform-d) δ 153.1, 152.5, 144.5, 142.9, 126.2 (q, $J = 289.4$ Hz), 116.6, 115.2, 114.9, 114.8, 60.5 (q, $J = 25.7$ Hz), 55.8, 55.7, 50.2, 40.2, 32.6 (q, $J = 1.1$ Hz).
Supplementary Figure 115: IR for compound 18
Supplementary Figure 116: 1H-NMR for compound 19

1H NMR (250 MHz, Chloroform-d) δ 8.04 – 7.88 (m, 1H), 7.79 (d, $J = 7.7$ Hz, 1H), 7.54 – 7.29 (m, 4H), 7.18 – 6.85 (m, 8H), 3.81 (s, 2H), 3.64 (d, $J = 13.0$ Hz, 1H), 3.41 (d, $J = 12.9$ Hz, 1H), 3.20 – 2.98 (m, 1H), 2.76 – 2.55 (m, 1H), 2.25 (dd, $J = 13.6, 3.1$ Hz, 1H), 1.85 (s, 3H), 1.79 (s, 3H).
Supplementary Figure 117: 19F NMR for compound 19

19F NMR (235 MHz, Chloroform-d) δ -67.95.
Supplementary Figure 118: 13C NMR for compound 19

13C NMR (63 MHz, Chloroform-d) δ 134.5, 134.0, 134.0, 132.6, 132.4, 128.5, 128.4, 128.2, 128.1, 127.6, 127.4 ($q, J = 290.4$ Hz), 127.2, 125.8, 125.8, 125.7, 125.3, 125.2, 125.1, 124.7, 61.7 ($q, J = 24.3$ Hz), 61.5, 58.0, 53.6, 42.5, 36.5.
Supplementary Figure 119: IR for compound 19
Supplementary Figure 120: 1H-NMR for compound 20

1H NMR (250 MHz, Chloroform-d) δ 3.16 (qt, $J = 8.9$, 5.2 Hz, 1H), 2.74 – 2.48 (m, 2H), 2.46 – 2.21 (m, 4H), 2.06 (h$^f = 7.9$, 6.9 Hz, 4H), 1.69 (tp$^f = 13.3$, 6.6 Hz, 4H), 1.06 – 0.68 (m, 24H).
Supplementary Figure 121: 19F NMR for compound 20

19F NMR (235 MHz, Chloroformd) δ -68.12.
Supplementary Figure 122: ^{13}C NMR for compound 20

^{13}C NMR (63 MHz, Chloroform-d) δ 127.7 (q, $J = 289.1$ Hz), 64.6, 60.8, 60.8 (q, $J = 23.8$ Hz), 53.9, 27.3, 26.5, 21.2, 21.1, 20.8, 20.7.
Supplementary Figure 123: IR for compound 20
Supplementary Figure 124: 1H-NMR for compound 21

1H NMR (250 MHz, Chloroform-d) δ 7.76 – 6.93 (m, 20H), 3.87 – 3.62 (m, 6H), 3.54 (tt, $J = 12.8, 6.4$ Hz, 1H), 3.35 (dd, $J = 13.5$ Hz, 2H), 3.03 (dd, $J = 13.6, 7.2$ Hz, 1H), 2.74 (dd, $J = 13.6, 4.2$ Hz, 1H).
Supplementary Figure 125: 19F NMR for compound 21

19F NMR (235 MHz, Chloroform) δ -67.32.
Supplementary Figure 126: 13C NMR for compound 21

13C NMR (63 MHz, Chloroform-d) δ 139.2, 138.7, 129.3, 129.1, 128.4, 128.4, 127.6 (d, $J = 290.1$ Hz), 127.3, 127.2, 58.7, 57.5 (q, $J = 24.5$ Hz), 54.5, 51.6.
Supplementary Figure 127: IR for compound 21
Supplementary Figure 128: 1H-NMR for compound 22

1H NMR (250 MHz, Chloroform) δ 3.64 (s, 21H), 3.11 (dd, J = 14.3, 8.1 Hz, 1H), 2.97 (dd, J = 14.3, 4.2 Hz, 1H).
Supplementary Figure 129: 19F NMR for compound 22

19F NMR (235 MHz, Chloroform) δ -70.72.
Supplementary Figure 130: 13C NMR for compound 22

13C NMR (63 MHz, Chloroform-<i>d</i>) δ 171.8, 171.5, 126.5 (q, $J = 290.2$, 289.6, 289.1 Hz), 63.1 (q, $J = 25.3$ Hz), 55.1, 52.6, 51.7, 51.5, 50.7.
Supplementary Figure 131: IR for compound 22
Supplementary Figure 132: 1H-NMR for compound 23

1H NMR (250 MHz, Chloroform-d) δ 7.20 (d, $J = 8.6$ Hz, 2H), 7.17 (d, $J = 8.6$ Hz, 2H), 6.77 (d, $J = 8.5$ Hz, 2H), 6.74 (d, $J = 8.6$ Hz, 2H), 3.98 (d, $J = 12.8$ Hz, 1H), 3.82 (d, $J = 12.8$ Hz, 1H), 3.76 – 3.62 (m, 8H), 3.31 (dd, $J = 16.1$, 11.2, 5.7 Hz, 1H), 3.20 (s, 7H), 2.81 (dd, $J = 14.1$, 4.9 Hz, 1H).
Supplementary Figure 133: 19F NMR for compound 23

19F NMR (235 MHz, Chloroform) δ -71.11.
Supplementary Figure 134: 13C NMR for compound 23

13C NMR (63 MHz, Chloroform-d) δ 159.2 (d, $J = 3.4$ Hz), 130.9, 129.1, 129.0, 125.8 (q, $J = 283.0$ Hz), 113.8, 62.3, 61.8 (q, $J = 26.5$ Hz), 61.1, 61.0, 59.0, 55.3, 51.9.
Supplementary Figure 135: IR for compound 23
Supplementary Figure 136: 1H-NMR for compound 24

1H NMR (250 MHz, Chloroform-d) δ 7.2 – 7.1 (m, 4H), 6.8 (d, $J = 3.5$ Hz, 2H), 6.8 (d, $J = 3.5$ Hz, 2H), 3.7 (s, 3H), 3.7 (s, 3H), 3.7 – 3.5 (m, 2H), 3.5 (δ = 13.5 Hz, 1H), 3.4 – 3.2 (m, 2H), 2.7 (dd, $J = 13.7$, 7.0 Hz, 1H), 2.6 (dd, $J = 9.2$, 5.6 Hz, 1H), 2.6 – 2.4 (m, 2H), 2.3 (q, $J = 13.0$, 7.0 Hz, 2H), 1.5 – 1.3 (m, 4H), 1.4 – 1.0 (m, 12H), 0.9 – 0.8 (m, 6H).
Supplementary Figure 137: 19F NMR for compound 24

19F NMR (235 MHz, Chloroform$_d$) δ -68.1.
13C NMR for compound 24

13C NMR (63 MHz, Chloroform-d) δ 158.8, 158.7, 132.0, 131.5, 130.2, 130.0, 127.6 (q, $J = 290.6$ Hz), 113.6, 113.6, 58.9 (q, $J = 23.8$ Hz), 58.4, 55.3, 54.7, 54.1, 51.7, 50.5, 31.9, 31.9, 28.9, 27.2, 26.8, 22.8, 14.2.
Supplementary Figure 139: IR for compound 24
Supplementary Figure 140: 1H-NMR for compound 25

1H NMR (250 MHz, Chloroform-d) δ 7.26 – 7.14 (m, 4H), 6.96 – 6.81 (m, 4H), 3.93 – 3.57 (m, 9H), 3.76 (d, $J = 13.6$ Hz, 1H), 3.63 (d, $J = 13.6$ Hz, 1H), 3.03 (dd, $J = 13.7$, 7.1 Hz, 1H), 2.92 (dd, $J = 13.6$, 5.4 Hz, 1H), 2.39 – 2.24 (m, 1H), 2.26 (s, 0H), 1.81 (p, $J = 5.5$ Hz, 1H), 0.57 – 0.20 (m, 8H).
Supplementary Figure 141: 19F NMR for compound 25

19F NMR (235 MHz, Chloroform) δ -67.9.
Supplementary Figure 142: ^{13}C NMR for compound 25

^{13}C NMR (63 MHz, Chloroform-<s>δ</s>) δ 158.9, 158.8, 132.2, 130.8, 130.3, 130.0, 127.4 (q, $J = 289.1$ Hz), 113.5, 113.4, 60.8 (q, $J = 24.2$ Hz), 58.7, 55.7, 55.2, 52.3, 37.2, 35.1, 8.5, 7.5, 7.3, 7.1.
Supplementary Figure 143: IR for compound 25
Supplementary Figure 144: 1H-NMR for compound 26

1H NMR (250 MHz, Chloroform-δ) δ 7.32 (d, $J = 8.6$ Hz, 2H), 7.15 (d, $J = 8.6$ Hz, 2H), 6.84 (d, $J = 6.4$ Hz, 2H), 6.81 (d, $J = 6.2$ Hz, 2H), 4.22 – 4.03 (m, 4H), 3.92 (d, $J = 13.3$ Hz, 1H), 3.84 – 3.62 (m, 9H), 3.68 – 3.24 (m, 5H), 3.11 (dd, $J = 14.2$, 7.9 Hz, 1H), 2.95 (dd, $J = 14.0$, 4.7 Hz, 1H), 1.32 – 1.17 (m, 6H).
Supplementary Figure 145: 19F NMR for compound 26

19F NMR (235 MHz, Chloroform) δ -68.56.
Supplementary Figure 146: 13C NMR for compound 26

13C NMR (63 MHz, Chloroform-d) δ 171.4, 159.1, 159.0, 130.5, 130.5, 130.3, 130.1, 127.2 (q, $J = 290.7$ Hz), 113.7, 113.7, 60.6, 60.2, 59.4 (q, $J = 24.2$ Hz), 57.8, 55.3, 55.2, 53.6, 51.6, 50.4, 14.3, 14.2.
Supplementary Figure 147: IR for compound 26
Supplementary Figure 148: 1H-NMR for compound 27

1H NMR (250 MHz, Chloroform-d) δ 7.25 – 7.08 (m, 4H), 6.87 – 6.70 (m, 4H), 5.93 – 5.59 (m, 2H), 5.23 – 4.98 (m, 4H), 3.75 (s, 3H), 3.72 – 3.63 (m, 2H), 3.58 (d, $J = 17.8$ Hz, 2H), 3.44 (dt, $J = 8.5$, 4.3 Hz, 1H), 3.32 (d, $J = 13.2$ Hz, 1H), 3.19 (dd, $J = 18.9$, 6.3 Hz, 1H), 3.06 (dd, $J = 14.7$, 6.0 Hz, 1H), 2.88 (dd, $J = 6.9$, 5.0 Hz, 1H), 2.80 (dd, $J = 11.4$, 5.9 Hz, 1H), 2.57 (dd, $J = 13.7$, 4.3 Hz, 1H).
Supplementary Figure 149: ^{19}F NMR for compound 27

^{19}F NMR (235 MHz, Chloroform) δ -68.3.
Supplementary Figure 150: 13C NMR for compound 27

13C NMR (63 MHz, Chloroform-d) δ 158.9, 137.0, 135.5, 131.6, 131.0, 130.3, 130.0, 127.5 (q, $J = 289.8$ Hz), 117.9, 117.5, 113.8, 113.7, 58.0, 57.7 (q, $J = 24.0$ Hz), 56.8, 55.3, 53.7, 53.4, 50.5.
Supplementary Figure 151: IR for compound 27
Supplementary Figure 152: 1H-NMR for compound 28

1H NMR (250 MHz, Chloroform-d) δ 3.72 – 3.40 (m, 5H), 2.97 – 2.77 (m, 2H), 2.71 (dd, $J = 13.9, 4.6$ Hz, 2H), 2.61 (q, $J = 7.2$ Hz, 2H), 2.23 (t, $J = 2.3$ Hz, 1H), 2.18 (t, $J = 2.2$ Hz, 1H), 1.10 (t, $J = 7.0$ Hz, 3H), 1.07 (t, $J = 7.1$ Hz, 3H).
Supplementary Figure 153: 19F NMR for compound 28

19F NMR (235 MHz, Chloroform-d) δ -69.41.
Supplementary Figure 154: 13C NMR for compound 28

13C NMR (63 MHz, Chloroform-δ) δ 127.0 (q, $J = 289.2$ Hz), 80.8, 78.6, 73.1, 72.4, 60.3 (q, $J = 24.7$ Hz), 49.6 (d, $J = 1.6$ Hz), 48.0, 44.3, 41.9, 40.1, 13.9, 12.9 (q, $J = 1.5$ Hz).
Supplementary Figure 155: IR for compound 28
Supplementary Figure 156: 1H-NMR for compound 29

1H NMR (250 MHz, Chloroform-d) δ 7.28 – 7.08 (m, 4H), 6.75 (d, $J = 8.3$ Hz, 4H), 3.84 (d, $J = 13.6$ Hz, 1H), 3.76 – 3.43 (m, 10H), 3.37 (dd, $J = 5.8$, 2.3 Hz, 2H), 3.26 (s, 2H), 2.91 (dd, $J = 13.4$, 8.9 Hz, 1H), 2.76 (dd, $J = 13.6$, 4.5 Hz, 1H), 2.22 – 2.09 (m, 2H).
Supplementary Figure 157: 19F NMR for compound 29

19F NMR (235 MHz, Chloroform) δ -68.86.
Supplementary Figure 158: 13C NMR for compound 29

13C NMR (63 MHz, Chloroform-d) δ 159.1, 130.5, 130.2, 130.0, 127.1 (q, $J = 288.9$ Hz), 113.9 (d, $J = 4.6$ Hz), 80.6, 78.2, 73.7, 72.8, 58.7 (q, $J = 24.8$ Hz), 57.6, 55.3, 53.3, 49.5, 41.3, 39.9.
Supplementary Figure 159: IR for compound 29
Supplementary Figure 160: 1H-NMR for compound 30

1H NMR (250 MHz, Chloroform-d) δ 7.53 – 7.40 (m, 4H), 7.38 – 7.23 (m, 6H), 3.87 (d, $J = 17.3$ Hz, 1H), 3.82 – 3.62 (m, 4H), 3.03 (dd, $J = 13.8$, 7.5 Hz, 1H), 2.90 (dd, $J = 13.7$, 4.9 Hz, 1H), 2.73 (dd, $J = 12.9$, 7.1 Hz, 1H), 2.58 (dd, $J = 12.9$, 7.6 Hz, 1H), 2.41 (dd, $J = 12.3$, 11.1, 7.3 Hz, 2H), 1.87 (d, $J = 20.1$, 6.7 Hz, 2H), 1.05 – 0.92 (m, 12H).
Supplementary Figure 161: 19F NMR for compound 30

19F NMR (235 MHz, Chloroform) δ -68.95.
Supplementary Figure 162: ^{13}C NMR for compound 30

^{13}C NMR (63 MHz, Chloroform-d) δ 131.9, 131.7, 128.4, 128.1, 127.2 (q, $J = 289.1$ Hz), 123.5, 123.4, 86.6, 85.7, 84.5, 84.4, 62.8, 61.4 (q, $J = 24.7$ Hz), 59.2, 51.4, 42.9, 41.4, 26.7, 26.2, 20.9, 20.7, 20.5.
Supplementary Figure 163: IR for compound 30
Supplementary Figure 164: 1H-NMR for compound 31

1H NMR (250 MHz, Chloroform-d) δ 7.41 – 7.24 (m, 4H), 7.23 – 7.03 (m, 6H), 3.76 (s, 2H), 3.73 – 3.56 (m, 3H), 2.96 (dJ = 6.0 Hz, 2H), 2.84 – 2.67 (m, 1H), 2.50 (t, J = 9.7, 7.8 Hz, 1H), 1.86 (qJ = 11.2, 10.7 Hz, 4H), 1.77 – 1.60 (m, 4H), 1.50 (d, J = 11.3 Hz, 2H), 1.43 – 0.87 (m, 10H).
Supplementary Figure 165: 19F NMR for compound 31

19F NMR (235 MHz, Chloroform-d) δ -69.58.
Supplementary Figure 166: 13C NMR for compound 31

13C NMR (63 MHz, Chloroform-d) δ 131.7, 128.3, 128.3, 128.0, 127.5 (q, $J = 290.4$ Hz), 123.7, 123.6, 88.2, 87.1, 84.9, 83.6, 62.3, 59.4 (q, $J = 24.5$ Hz), 58.3, 47.0, 40.0, 36.6, 32.6, 31.3, 30.5, 30.2, 26.3, 26.1, 26.1, 26.0.
Supplementary Figure 167: IR for compound 31
Supplementary Figure 168: 1H-NMR for compound 32

1H NMR (250 MHz, Chloroform-d) δ 7.3 – 7.0 (m, 10H), 4.0 – 3.8 (m, 6H), 3.7 – 3.5 (m, 4H), 3.3 – 3.2 (m, 1H), 3.2 – 2.9 (m, 2H), 2.8 – 2.5 (m, 8H), 1.4 (s, 9H), 1.4 (s, 9H).
Supplementary Figure 169: $^{19}\text{F NMR for compound 32}$

$^{19}\text{F NMR (235 MHz, Chloroformδ) δ -69.5.}$
Supplementary Figure 170: 13C NMR for compound 32

13C NMR (63 MHz, Chloroform-d) δ 156.3, 156.1, 139.5, 139.2, 128.8, 128.7, 128.6, 128.5, 126.8 (q, $J = 290.4$ Hz), 126.5, 126.4, 79.7, 79.6, 60.7 (q, $J = 24.0$ Hz), 55.1, 53.7, 51.8, 49.4, 47.9, 47.0, 36.4, 33.2, 28.4, 28.4.
Supplementary Figure 171: IR for compound 32
Supplementary Figure 172: 1H-NMR for compound 33

1H NMR (250 MHz, Chloroformd_6) δ 4.4 (dp, $J = 12.4$, 6.2 Hz, 2H), 3.7 (dt, $J = 12.0$, 4.9 Hz, 4H), 3.1 (t, $J = 6.6$ Hz, 1H), 3.0 (t, $J = 6.8$ Hz, 1H), 2.7 (td, $J = 6.4$, 3.1 Hz, 2H), 2.7 – 2.3 (m, 3H), 0.8 (s, 18H), -0.0 (s, 12H).
Supplementary Figure 173: 19F NMR for compound 33

19F NMR (235 MHz, Chloroform) δ -72.1.
Supplementary Figure 174: 13C NMR for compound 33

13C NMR (63 MHz, Chloroform-d) δ 125.9 (q, $J = 282.8$ Hz), 65.5, 65.5 (q, $J = 25.7$ Hz), 65.0, 62.7, 62.1, 57.0 (d, $J = 2.0$ Hz), 25.9, 18.1, -4.9.
Supplementary Figure 175: IR for compound 33
Supplementary Figure 176: 1H-NMR for compound 34

1H NMR (250 MHz, Chloroform-d) δ 3.76 – 3.59 (m, 8H), 3.63 – 3.49 (m, 3H), 3.47 (t, $J = 7.3$ Hz, 1H), 3.41 – 3.16 (m, 4H), 2.80 – 2.59 (m, 1H), 2.62 – 2.47 (m, 2H).
Supplementary Figure 177: 19F NMR for compound 34

19F NMR (235 MHz, Chloroform) δ -72.00.
Supplementary Figure 178: 13C NMR for compound 34

13C NMR (63 MHz, Chloroform-d) δ 173.3, 173.1, 125.6 (q, $J = 282.9$ Hz), 64.5 (q, $J = 25.8$ Hz), 57.7, 56.9, 56.0 (q, $J = 2.1$ Hz), 55.3, 52.0, 34.5, 33.7.
Supplementary Figure 179: IR for compound 34
Supplementary Figure 180: 1H-NMR for compound 35

1H NMR (250 MHz, Methylenechloride) δ 11.26 (bs, 2H), 4.10 – 3.10 (m, 6H), 2.92 (d, $J = 38.7$, 7.0 Hz, 4H), 2.23 – 1.97 (m, 4H), 1.79 (d, $J = 6.4$ Hz, 4H).
Supplementary Figure 181: ^{19}F NMR for compound 35

^{19}F NMR (235 MHz, Methylenechlorided_2) δ -66.21 (s, 3F), -74.39 (s, 6F).
Supplementary Figure 182: $^{13}\text{C NMR for compound 35}$

$^{13}\text{C NMR (63 MHz, Methylenechloride-d2)}$ δ 126.1 (q, $J = 294.0$ Hz), 114.3 (q, $J = 291.1$ Hz), 58.8 (q, $J = 26.7$ Hz), 56.0, 52.5 (q, $J = 2.4$ Hz), 48.9, 24.4, 23.5.
Supplementary Figure 183: *IR for compound 35*
Supplementary Figure 184: 1H-NMR for compound 36

1H NMR (250 MHz, Chloroform-d) δ 3.16 (ddq, $J = 12.5, 9.0, 4.5, 3.6$ Hz, 1H), 2.90 – 2.57 (m, 5H), 2.56 – 2.32 (m, 5H), 1.67 – 1.22 (m, 12H).
Supplementary Figure 185: 19F NMR for compound 36

19F NMR (235 MHz, Chloroform) δ -68.90.
Supplementary Figure 186: 13C NMR for compound 36

13C NMR (63 MHz, Chloroform-d) δ 127.2 (q, $J = 290.6$ Hz), 64.3 (q, $J = 23.8$ Hz), 55.1 (q, $J = 1.7$ Hz), 54.8, 51.0, 27.1, 26.3, 24.8, 24.5.
Supplementary Figure 187: IR for compound 36
Supplementary Figure 188: 1H-NMR for compound 37

1H NMR (250 MHz, Chloroform-d) δ 3.77 – 3.49 (m, 2H), 3.35 – 3.10 (m, 1H), 3.06 – 2.25 (m, 8H), 2.13 – 1.76 (m, 4H), 1.74 – 1.34 (m, 4H), 1.32 – 1.07 (m, 2H), 0.88 (s, 18H), 0.19 – 0.08 (m, 12H).
Supplementary Figure 189: 19F NMR for compound 37

19F NMR (235 MHz, CDCl$_3$) δ -68.97, -69.44, -69.48, -69.52
Supplementary Figure 190: 13C NMR for compound 37

13C NMR (63 MHz, CDCl$_3$) δ 129.3, 129.3, 129.2, 124.7, 124.7, 124.6, 69.1, 69.0, 68.9, 68.7, 68.5, 68.5, 64.5, 64.1, 63.8, 63.7, 63.7, 63.4, 63.3, 63.0, 62.9, 62.7, 62.1, 62.1, 61.6, 61.3, 58.9, 58.7, 57.6, 56.5, 54.1, 54.0, 53.8, 53.7, 53.4, 51.3, 50.3, 49.5, 49.4, 34.5, 34.4, 34.1, 26.0, 26.0, 18.3, 18.3, -4.5, -4.5.
Supplementary Figure 191: IR for compound 37
Supplementary Figure 192: 1H-NMR for compound 38

1H NMR (250 MHz, Chloroform-d) δ 3.54 – 3.30 (m, 4H), 3.21 (p, J = 8.4 Hz, 1H), 3.08 – 2.36 (m, 8H), 2.06 (t, J = 10.2 Hz, 1H), 1.95 – 1.35 (m, 9H), 0.89 (s, 20H), 0.03 (s, 12H).
Supplementary Figure 193: 19F NMR for compound 38

19F NMR (235 MHz, CDCl$_3$) δ -68.87, -68.96, -69.00, -69.12.
Supplementary Figure 194: 13C NMR for compound 38

13C NMR (63 MHz, Chloroform-d): δ 127.2 ($q, J = 290.5$ Hz), 64.6 ($q, J = 23.7, 23.2$ Hz), 64.0 ($q, J = 24.0$ Hz), 57.8, 57.7, 57.4, 55.0, 54.9, 54.8, 54.6, 54.5, 52.8, 51.9, 51.8, 50.3, 50.1, 39.9, 39.8, 39.3, 39.3, 39.1, 27.5, 27.2, 27.1, 26.1, 26.0, 25.9, 25.7, 25.2, 25.2, 25.1, 18.5, 18.4, -5.2, -5.3.
Supplementary Figure 195: IR for compound 38
Supplementary Figure 196: 1H-NMR for compound 39

1H NMR (250 MHz, Chloroform-d) δ 7.27 – 7.03 (m, 10H), 3.35 – 3.21 (m, 1H), 3.01 (d, $J = 11.2$ Hz, 1H), 2.85 (t, $J = 11.3$ Hz, 3H), 2.64 (dd, $J = 13.1$, 9.2 Hz, 2H), 2.56 – 2.38 (m, 6H), 2.02 (q, $J = 11.0$ Hz, 2H), 1.54 (q, $J = 16.5$, 14.8 Hz, 7H), 1.40 – 1.05 (m, 3H).
Supplementary Figure 197: 19F NMR for compound 39

19F NMR (235 MHz, Chloroform) δ -68.79.
Supplementary Figure 198: 13C NMR for compound 39

13C NMR (63 MHz, Chloroform) δ 140.8, 140.7, 129.2, 128.3, 128.3, 126.2 (q, $J = 291.0$ Hz), 126.0, 125.9, 63.7 (q, $J = 24.2$ Hz), 54.4, 54.1, 51.3, 48.8, 43.3, 43.2, 38.2, 37.8, 33.3, 33.1, 32.2, 32.1.
Supplementary Figure 199: IR for compound 39
Supplementary Figure 200: 1H-NMR for compound 40

1H NMR (250 MHz, Methylenechloridδ) δ 9.53 (s, 2H), 3.98 (s, 4H), 3.91 – 3.75 (m, 2H), 3.73 – 3.52 (m, 4H), 3.51 – 3.07 (m, 4H), 3.07 – 2.87 (m, 2H), 2.80 – 2.57 (m, 2H).
Supplementary Figure 201: 19F NMR for compound 40
Supplementary Figure 202: ^{13}C NMR for compound 40

^{13}C NMR (63 MHz, Methylenechloride-d$_2$) δ 161.3 (q, J = 38.1 Hz), 125.7 (q, J = 293.0 Hz), 114.0 (q, J = 289.8, 286.9 Hz), 67.5, 64.1, 62.0 (q, J = 26.2 Hz), 53.3 (q, J = 2.8 Hz), 49.8.
Supplementary Figure 203: IR for compound 40
Supplementary Figure 204: \(^1\text{H-NMR for compound 41}\)

\(^1\text{H NMR (250 MHz, Chloroform)}\delta 7.38 – 7.05 (m, 10H), 3.42 (d, \(J = 6.4\) Hz, 4H), 3.13 (td, \(J = 8.7, 3.3\) Hz, 1H), 2.90 – 2.18 (m, 18H).
Supplementary Figure 205: 19F NMR for compound 41

19F NMR (235 MHz, Chloroform) δ -69.19.
Supplementary Figure 206: 13C NMR for compound 41

13C NMR (63 MHz, Chloroform-d) δ 138.1, 138.0, 129.3, 129.3, 128.3, 128.3, 127.2, 127.2, 126.8 (q, $J = 289.9$ Hz), 63.4 (q, $J = 24.4$ Hz), 63.1, 63.1, 54.0, 53.4, 53.2, 49.5.
Supplementary Figure 207: IR for compound 41
Supplementary Figure 208: 1H-NMR for compound 42

1H NMR (250 MHz, Chloroform-δ) δ 8.17 (dd, $J = 4.9$, 1.9 Hz, 2H), 7.53 – 7.36 (m, 2H), 6.69 – 6.53 (m, 4H), 3.63 – 3.25 (m, 9H), 3.09 – 2.74 (m, 5H), 2.76 – 2.47 (m, 5H).
Supplementary Figure 209: ^{19}F NMR for compound 42

^{19}F NMR (235 MHz, Chloroform-d) δ -69.33.
Supplementary Figure 210: 13C NMR for compound 42

13C NMR (63 MHz, Chloroform-d$_3$) δ 159.6 (d, $J = 7.8$ Hz), 148.0 (d, $J = 1.6$ Hz), 137.6, 126.6 (q, $J = 289.1$ Hz), 107.2 (d, $J = 4.3$ Hz), 63.4 (q, $J = 24.8$ Hz), 54.0 (q, $J = 2.0$ Hz), 53.3, 49.6, 46.3, 45.4.
Supplementary Figure 211: IR for compound 42
Supplementary Figure 212: 1H-NMR for compound 43

1H NMR (250 MHz, Chloroform-d) δ 3.30 (dd, $J = 8.6$, 5.5 Hz, 1H), 2.94 (qd, $J = 11.4$, 3.8 Hz, 7H), 2.62 (dddd, $J = 35.2$, 23.9, 13.4, 6.3 Hz, 11H), 1.90 (s, 5H), 1.71 (dd, $J = 25.8$, 5.3 Hz, 14H), 1.62 – 1.54 (m, 17H).
Supplementary Figure 213: 19F NMR for compound 43

19F NMR (235 MHz, Chloroform-d) δ -69.56.
Supplementary Figure 214: 13C NMR for compound 43

13C NMR (63 MHz, Chloroform-d$_6$) δ 127.6 (q, $J = 291.2\text{ Hz}$), 63.8 (q, $J = 23.9\text{ Hz}$), 63.3, 59.4, 55.3 (q, $J = 1.5\text{ Hz}$), 31.6, 30.7, 25.9, 25.8, 25.7, 25.7.
Supplementary Figure 215: IR for compound 43
1H NMR (250 MHz, Chloroform-d) δ 8.19 – 8.06 (m, 1H), 7.94 – 7.69 (m, 2H), 7.61 – 7.44 (m, 2H), 7.50 – 7.35 (m, 2H), 4.36 (d, J = 13.0 Hz, 1H), 4.27 (d, J = 13.2 Hz, 1H), 3.47 (dd, J = 8.6, 3.5 Hz, 1H), 2.87 (dd, J = 12.7, 10.6 Hz, 1H), 2.64 (dd, J = 12.7, 3.4 Hz, 1H), 2.49 (q, J = 2.0 Hz, 3H), 2.46 – 1.88 (m, 3H), 1.39 – 0.92 (m, 8H), 0.87 (t, J = 6.9 Hz, 3H).
Supplementary Figure 217: 19F NMR for compound 44

19F NMR (235 MHz, Chloroform-d) δ -66.63.
Supplementary Figure 218: 13C NMR for compound 44

13C NMR (63 MHz, Chloroform-d) δ 134.2, 134.0, 132.4, 128.9, 128.7, 127.7 (q, J = 292.0 Hz), 126.2, 125.9, 125.3, 124.4, 60.9 (q, J = 24.4 Hz), 58.4, 49.3, 45.2 (q, J = 2.0 Hz), 35.9, 31.8, 29.8, 27.0, 22.7, 14.2.
Supplementary Figure 219: IR for compound 44
Supplementary Figure 220: 1H-NMR for compound 45

1H NMR (300 MHz, Chloroform-d) δ 8.33 (d, $J = 7.2$ Hz, 1H), 7.86 (dd, $J = 7.0$, 2.3 Hz, 1H), 7.80 (d, $J = 8.2$ Hz, 1H), 7.57 – 7.40 (m, 4H), 4.40 (d, $J = 13.4$ Hz, 1H), 4.31 (d, $J = 13.4$ Hz, 1H), 3.50 (pd, $J = 8.8$, 3.9 Hz, 1H), 3.02 (dd, $J = 13.1$, 9.3 Hz, 1H), 2.65 (dd, $J = 13.1$, 3.9 Hz, 1H), 2.56 – 2.39 (m, 7H), 1.80 – 1.66 (m, 4H).
Supplementary Figure 221: COSY NMR for compound 45
Supplementary Figure 222: ^{19}F NMR for compound 45

^{19}F NMR (235 MHz, Chloroform-d) δ -67.8.
Supplementary Figure 223: 13C NMR for compound 45

13C NMR (75 MHz, Chloroform-d$_6$) δ 134.5, 134.0, 132.5, 128.5, 128.2, 127.6, 127.4 (q, $J = 291.7$ Hz), 125.8, 125.8, 125.3, 124.9, 62.7 (q, $J = 24.1$ Hz), 58.3, 54.4, 52.3, 36.8, 23.6.
Supplementary Figure 224: HSQC NMR for compound 45
Supplementary Figure 225: HMBC NMR for compound 45
GC-MS TIC for compound 45

Chemical Formula: C_{10}H_{13}N^+
Exact Mass: 84.08

Chemical Formula: C_{11}H_{14}^+
Exact Mass: 141.07

Chemical Formula: C_{19}H_{23}F_{3}N_{2}^2+
Exact Mass: 336.18
Supplementary Figure 226: IR for compound 45
Supplementary Figure 227: \(^1\)H-NMR for compound 46

\(^1\)H NMR (250 MHz, Chloroform-\(d\)) \(\delta\) 8.32 (dd, \(J = 20.1, 7.6\) Hz, 1H), 7.85 (dd, \(J = 16.0, 8.2\) Hz, 2H), 7.63 – 7.36 (m, 4H), 4.51 – 4.23 (m, 2H), 3.47 (dq, \(J = 12.1, 4.9, 3.5\) Hz, 1H), 3.13 (dd, \(J = 13.8, 9.4\) Hz, 1H), 2.76 (dd, \(J = 16.7, 14.3\) Hz, 3H), 2.55 – 2.45 (m, 3H), 2.41 – 1.99 (m, 2H), 1.57 (d, \(J = 11.6\) Hz, 2H), 1.51 – 1.40 (m, 2H), 1.34 – 1.13 (m, 2H), 1.02 (t, \(J = 5.9\) Hz, 3H).
Supplementary Figure 228: 19F NMR for compound 46

19F NMR (235 MHz, Chloroform-d) δ -67.46.
Supplementary Figure 229: 13C NMR for compound 46

13C NMR (63 MHz, Chloroform-d$_3$) 8 134.6, 134.5, 134.0, 132.6, 128.5, 128.5, 128.2, 127.7 (q, J = 291.6, 291.1 Hz), 127.5, 125.9, 125.7, 125.3, 125.2, 124.9, 62.2 (q, J = 23.4 Hz), 61.0 (q, J = 23.4 Hz), 58.7, 58.4, 56.5, 56.2, 52.8, 52.2, 51.5, 50.2, 36.8, 36.6, 34.8, 34.3, 26.1, 23.8, 23.0, 19.0, 17.8.
Supplementary Figure 230: IR for compound 46
Supplementary Figure 231: 1H-NMR for compound 47

1H NMR (250 MHz, Chloroform-d) δ 8.32 (d, $J = 8.6$ Hz, 1H), 7.97 – 7.76 (m, 2H), 7.64 – 7.38 (m, 4H), 4.51 – 4.27 (m, 2H), 3.48 – 3.24 (m, 1H), 2.94 (hept, $J = 6.6$ Hz, 2H), 2.78 (d, $J = 5.8$ Hz, 2H), 2.50 (s, 3H), 0.96 (s, 6H), 0.93 (s, 6H).
Supplementary Figure 232: $^{19}\text{F} \text{NMR for compound 47}$

$^{19}\text{F} \text{NMR (235 MHz, Chloroform-d)} \delta -66.27.$
Supplementary Figure 233: 13C NMR for compound 47

13C NMR (63 MHz, Chloroform-d) δ 134.7, 134.0, 132.6, 130.5, 128.5, 128.1, 127.4, 125.8, 125.7, 125.3, 125.1, 63.6 (q, $J = 22.0$ Hz), 59.1, 48.0, 42.7, 36.4, 20.9, 20.6.
Supplementary Figure 234: IR for compound 47
Supplementary Figure 235: \(^1\)H-NMR for compound 48

\(^1\)H NMR (250 MHz, Chloroform-\(d\)) \(\delta\) 8.15 (d, \(J = 8.2\) Hz, 1H), 7.94 – 7.72 (m, 2H), 7.64 – 7.34 (m, 4H), 4.32 (s, 2H), 3.59 (bs, \(J = 9.2\) Hz, 6H), 3.49 (ddd, \(J = 11.2, 8.4, 3.3\) Hz, 2H), 2.90 (t, \(J = 11.4\) Hz, 1H), 2.71 (dd, \(J = 11.9, 3.5\) Hz, 1H), 2.45 (s, 3H), 2.02 – 1.89 (m, 3H), 1.66 – 1.41 (m, 6H), 1.34 (d, \(J = 17.1\) Hz, 6H).
Supplementary Figure 236: 19F NMR for compound 48

19F NMR (235 MHz, Chloroform-d) δ -66.63.
Supplementary Figure 237: 13C NMR for compound 48

13C NMR (63 MHz, Chloroform-d): δ 134.3, 133.8, 132.4, 128.9, 128.7, 128.2, 127.1 (q, $J = 292.4$ Hz), 126.5, 125.9, 125.3, 124.6, 62.6 (q, $J = 24.8$ Hz), 58.6, 51.1, 41.8, 36.4, 36.1 – 35.6 (m), 35.1, 29.4.
Supplementary Figure 238: IR for compound 48
Supplementary Figure 239: 1H-NMR for compound 49
Supplementary Figure 240: 19F NMR for compound 49

19F NMR (235 MHz, Chloroform-d) δ -66.22.
Supplementary Figure 241: ^{13}C NMR for compound 49

^{13}C NMR (63 MHz, Chloroform-d) δ 146.8, 134.0, 133.9, 132.4, 129.4, 128.5 (d, $J = 1.3$ Hz), 127.8, 127.7 (q, $J = 293.6$ Hz), 126.0, 125.7, 125.1, 124.9, 116.2, 112.1, 60.5 (q, $J = 22.9$ Hz), 59.6, 47.7, 46.0, 35.9, 11.5.
Supplementary Figure 242: IR for compound 49
Supplementary Figure 243: 1H-NMR for compound 50

1H NMR (250 MHz, Chloroform-d) δ 8.14 (d, J = 7.2 Hz, 1H), 7.84 – 7.68 (m, 2H), 7.56 (d, J = 7.8 Hz, 1H), 7.52 – 7.28 (m, 5H), 7.14 (dd, J = 14.2, 7.3 Hz, 2H), 4.27 (s, 2H), 3.51 (ddq, J = 12.7, 8.4, 4.3 Hz, 1H), 3.29 (dd, J = 13.6, 8.1 Hz, 1H), 3.16 (dd, J = 13.6, 4.2 Hz, 1H), 2.54 (s, 3H), 2.34 (s, 3H).
Supplementary Figure 244: 19F NMR for compound 50

19F NMR (235 MHz, Chloroform-d): δ -59.64 (s, 3F), -67.66 (s, 3F).
Supplementary Figure 245: 13C NMR for compound 50

13C NMR (65 MHz, Chloroform-d) δ 153.1, 134.0, 133.0, 132.4, 129.6, 128.6, 128.3, 127.7 (d, $J = 5.5$ Hz), 127.5, 127.5, 127.1, 126.5 (d, $J = 20.7$ Hz), 126.1, 125.8, 125.4, 124.7, 124.7, 124.6, 122.0, 62.7 (q, $J = 24.0$ Hz), 58.2, 53.8, 45.5, 36.4.
Supplementary Figure 246: IR for compound 50
Supplementary Figure 247: 1H-NMR for compound 51

1H NMR (250 MHz, Chloroform-d) δ 8.32 – 8.08 (m, 1H), 7.99 – 7.72 (m, 2H), 7.64 – 7.36 (m, 4H), 7.08 (d, $J = 8.1$ Hz, 1H), 7.04 (d, $J = 8.3$ Hz, 1H), 6.79 (d, $J = 8.4$ Hz, 1H), 6.74 (d, $J = 8.4$ Hz, 1H), 4.44 – 4.19 (m, 2H), 3.86 – 3.61 (m, 7H), 3.55 – 3.27 (m, 3H), 3.23 – 3.06 (m, 1H), 3.03 – 2.68 (m, 1H), 2.54 – 2.33 (m, 3H), 1.75 – 1.41 (m, 3H), 0.91 – 0.60 (m, 6H).
Supplementary Figure 248: 19F NMR for compound 51

19F NMR (235 MHz, Chloroform-d) δ -66.1, -66.6.
Supplementary Figure 249: 13C NMR for compound 51

13C NMR (63 MHz, CDCl$_3$) δ 173.8, 173.7, 158.8, 134.3, 134.1, 134.0, 132.4, 132.3, 131.0, 130.8, 130.3, 130.2, 128.6, 128.6, 128.2, 128.1, 127.3, 126.0, 125.9, 125.7, 125.3, 124.6, 124.3, 113.6, 63.8, 63.5, 63.3, 62.9, 62.5, 60.6, 60.5, 58.2, 58.1, 56.0, 55.8, 55.2, 55.2, 51.1, 51.1, 48.5, 48.1, 39.3, 38.6, 36.9, 36.3, 30.9, 24.7, 24.6, 22.8, 22.7, 22.3, 22.2.
Supplementary Figure 250: IR for compound 51
Supplementary Figure 251: \(^1\)H-NMR for compound 52

\(^1\)H NMR (250 MHz, Chloroform-\(d\)) \(\delta\) 7.75 – 7.59 (m, 2H), 7.44 (d, \(J = 8.2\) Hz, 1H), 7.39 – 7.16 (m, 4H), 7.11 (d, \(J = 7.1\) Hz, 1H), 7.03 (s, 1H), 4.24 – 3.98 (m, 4H), 3.80 (ddp, \(J = 12.9, 8.6, 4.6\) Hz, 1H), 2.53 – 2.17 (m, 3H).
Supplementary Figure 252: 19F NMR for compound 52

19F NMR (235 MHz, Chloroform-d) δ -67.00.
Supplementary Figure 253: 13C NMR for compound 52

13C NMR (65 MHz, Chloroform-d) δ 140.4, 133.9, 133.1, 132.1, 130.6, 128.7, 128.4, 127.7, 126.6 (q, J = 292.7 Hz), 126.3, 125.8, 125.1, 123.9, 93.2, 63.1 (q, J = 25.0 Hz), 58.7, 48.7 (q, J = 2.2 Hz), 35.2.
Supplementary Figure 254: IR for compound 52
Supplementary Figure 255: 1H-NMR for compound 53

1H NMR (250 MHz, Chloroform-d) δ 7.59 – 7.32 (m, 7H), 7.22 – 7.06 (m, 2H), 6.76 (t, $J = 7.5$ Hz, 1H), 6.52 (t, $J = 7.6$ Hz, 1H), 4.17 – 3.85 (m, 3H), 3.60 (d, $J = 11.4$, 8.2, 3.3 Hz, 1H), 3.33 (dd, $J = 13.9$, 3.4 Hz, 1H), 2.57 (s, 3H).
Supplementary Figure 256: 19F NMR for compound 53

19F NMR (235 MHz, Chloroform-d) δ -66.58.
Supplementary Figure 257: ^{13}C NMR for compound 53

^{13}C NMR (65 MHz, Chloroform-d) δ 167.3, 133.7, 133.5, 133.2, 131.9, 131.8, 128.1, 126.8 (q, $J = 293.3$ Hz), 123.7, 123.1, 58.4, 57.6 (q, $J = 24.5$ Hz), 36.1, 33.9 (q, $J = 2.6$ Hz).
Supplementary Figure 258: IR for compound 53
Supplementary Figure 259: 1H-NMR for compound 54

1H NMR (300 MHz, Chloroform-d) 6.789 (d, $J = 8.2$ Hz, 1H), 7.81 (d, $J = 8.3$ Hz, 1H), 7.80 - 7.74 (m, 1H), 7.72 (d, $J = 7.9$ Hz, 1H), 7.52 (d, $J = 7.5$ Hz, 1H), 7.37 - 7.29 (m, 2H), 7.25 - 7.20 (m, 2H), 7.18 (d, $J = 7.2$ Hz, 1H), 7.14 - 7.05 (m, 1H), 7.01 (d, $J = 3.2$ Hz, 1H), 6.53 (d, $J = 3.2$ Hz, 1H), 4.49 (dd, $J = 15.0$, 4.5 Hz, 1H), 4.38 (dd, $J = 15.0$, 8.6 Hz, 1H), 4.29 (d, $J = 13.5$ Hz, 1H), 4.23 (d, $J = 13.3$ Hz, 1H), 3.85 (pdd, $J = 8.4$, 4.5 Hz, 1H), 2.68 (s, 3H).
Supplementary Figure 260: COSY NMR for compound 54
Supplementary Figure 261: ^{19}F NMR for compound 54

^{19}F NMR (282 MHz, Chloroformδ) δ -66.82 (d, $J = 8.4$ Hz).
Supplementary Figure 262: 13C NMR for compound 54

13C NMR (75 MHz, Chloroform-d) δ 135.8, 133.8, 133.1, 132.1, 129.0, 128.9, 128.7, 128.4, 127.6, 126.1, 125.7, 125.1, 124.1, 121.9, 121.3, 119.7, 108.9, 101.8, 62.4 (q, $J = 24.4$ Hz), 58.8, 43.5 (q, $J = 2.4$ Hz), 35.7.
Supplementary Figure 263: HSQC NMR for compound 54
Supplementary Figure 264: *HMBC NMR for compound 54*
Supplementary Figure 265: IR for compound 54
Supplementary Figure 266: 1H-NMR for compound 55

1H NMR (300 MHz, Chloroform-d): 8.27 (d, $J = 4.7$ Hz, 1H), 7.94 – 7.86 (m, 1H), 7.76 (d, $J = 8.3$ Hz, 1H), 7.69 (d, $J = 8.3$ Hz, 1H), 7.48 (d, $J = 8.6$ Hz, 1H), 7.38 (d, $J = 7.6$ Hz, 1H), 7.31 – 7.22 (m, 1H), 7.17 – 7.03 (m, 3H), 6.96 (d, $J = 3.5$ Hz, 1H), 6.33 (d, $J = 3.5$ Hz, 1H), 4.58 (d, $J = 7.0$ Hz, 2H), 4.22 (d, $J = 13.5$ Hz, 1H), 4.19 – 4.07 (m, 2H), 2.61 (s, 3H).
Supplementary Figure 267: $^{19}\text{F} \text{NMR for compound 55}$

$^{19}\text{F} \text{NMR (282 MHz, Chloroform)} \delta \ -66.97 \ (d, J = 8.0 \text{ Hz})$.
Supplementary Figure 268: 13C NMR for compound 55

13C NMR (75 MHz, Chloroform-d) δ 147.3, 142.6, 133.7, 133.4, 132.1, 129.0, 128.6, 128.3, 128.2, 127.4, 127.0 ($q, J = 293.4$ Hz), 125.8, 125.5, 125.0, 123.9, 120.9, 115.9, 100.1, 62.4 ($q, J = 24.3$ Hz), 58.5, 41.2, 35.7.
Supplementary Figure 269: IR for compound 55
Supplementary Figure 270: 1H-NMR for compound 56

1H NMR (250 MHz, Chloroform-d) δ 7.68 (dt, $J = 16.3$, 7.0 Hz, 4H), 7.46 (d, $J = 8.6$ Hz, 1H), 7.37 (ddd, $J = 8.2$, 6.8, 1.4 Hz, 1H), 7.31 – 7.13 (m, 3H), 7.14 – 6.98 (m, 2H), 6.82 (d, $J = 8.1$ Hz, 1H), 4.26 (d, $J = 7.7$ Hz, 1H), 4.23 (d, $J = 13.8$ Hz, 1H), 4.12 (d, $J = 13.0$ Hz, 1H), 3.66 (p, $J = 8.3$, 5.8 Hz, 1H), 2.66 – 2.56 (m, 4H).
Supplementary Figure 271: 19F NMR for compound 56

19F NMR (235 MHz, Chloroform-d) δ -66.56.
Supplementary Figure 272: ^{13}C NMR for compound 56

^{13}C NMR (65 MHz, Chloroform-d) δ 143.5, 143.4, 133.7, 133.1, 132.4, 131.8, 128.7, 128.4, 127.8, 126.7 (q, $J = 293.2$ Hz), 126.3, 125.9, 124.9, 123.4, 123.1, 122.3, 120.6, 108.7, 68.8 (q, $J = 26.7$ Hz), 58.5, 41.9 (d, $J = 2.2$ Hz), 35.8.
Supplementary Figure 273: IR for compound 56
Supplementary Figure 274: 1H-NMR for compound 57

1H NMR (300 MHz, Chloroform-d) δ 7.78 – 7.65 (m, 4H), 7.58 (dd, $J = 8.4$ Hz, 1H), 7.38 (dd, $J = 8.8, 6.6$ Hz, 1H), 7.31 – 7.23 (m, 1H), 7.22 – 7.18 (m, 2H), 7.15 (d, $J = 8.1$ Hz, 2H), 6.48 (t, $J = 7.7$ Hz, 1H), 4.69 (dd, $J = 13.9, 3.5$ Hz, 1H), 4.57 (dd, $J = 13.9, 10.2$ Hz, 1H), 4.42 – 4.26 (m, 1H), 4.22 (s, 2H), 2.51 (s, 3H).
Supplementary Figure 275: 19F NMR for compound 57

19F NMR (282 MHz, Chloroform) δ -66.87 (d, $J = 8.3$ Hz).
Supplementary Figure 276: 13C NMR for compound 57

13C NMR (75 MHz, Chloroform-d) δ 149.1, 133.6, 133.1, 131.9, 128.5, 128.0, 127.7, 126.4, 125.7, 125.6, 124.8, 124.7, 124.0 (q, $J = 289.9$ Hz), 123.7, 121.8, 120.5, 117.4, 64.0 (q, $J = 25.2$ Hz), 59.2, 49.6 (d, $J = 2.7$ Hz), 34.6.
Supplementary Figure 277: IR for compound 57
Supplementary Figure 278: 1H-NMR for compound 58

1H NMR (300 MHz, Chloroform-d) δ 7.98 – 7.89 (m, 1H), 7.68 – 7.59 (m, 2H), 7.24 (dd, $J = 15.1, 12.7, 5.0$ Hz, 5H), 7.03 (d, $J = 6.9$ Hz, 1H), 7.00 – 6.92 (m, 2H), 4.90 (dd, $J = 14.7, 10.3$ Hz, 1H), 4.66 (dd, $J = 14.7, 3.9$ Hz, 1H), 4.17 (d, $J = 12.9$ Hz, 1H), 4.11 (d, $J = 13.3$ Hz, 1H), 4.04 – 3.89 (m, 1H), 2.71 (q, $J = 2.0$ Hz, 3H).
Supplementary Figure 279: 19F NMR for compound 58

19F NMR (282 MHz, Benzene-d_6) δ -66.98 (d, $J = 8.0$ Hz.)
Supplementary Figure 280: 13C NMR for compound 58

13C NMR (75 MHz, Chloroform-d$_6$) δ 145.7, 133.5, 132.9, 132.4, 131.7, 128.6, 128.2, 127.7, 127.4, 126.5 (q, J = 292.6 Hz), 125.9, 125.6, 124.7, 123.7, 123.3, 120.1, 108.4, 60.8 (q, J = 25.2 Hz), 58.3, 44.3, 35.8.
Supplementary Figure 281: IR for compound 58
Supplementary Figure 282: 1H-NMR for compound 59

1H NMR (300 MHz, Chloroform-d) 8 7.98 – 7.85 (m, 2H), 7.65 (d, $J = 8.2$ Hz, 1H), 7.48 (qd, $J = 9.5, 8.6, 5.1$ Hz, 4H), 7.30 (t, $J = 7.6$ Hz, 1H), 7.21 (d, $J = 6.9$ Hz, 1H), 7.09 (dt, $J = 6.4, 3.4$ Hz, 2H), 5.05 (dd, $J = 14.0, 11.0$ Hz, 1H), 4.59 (dd, $J = 14.0, 3.5$ Hz, 1H), 4.20 (dd, $J = 13.2, 8.7$ Hz, 2H), 4.09 (ddd, $J = 16.1, 8.1, 4.2$ Hz, 1H), 2.67 (q, $J = 2.0$ Hz, 3H).
Supplementary Figure 283: COSY NMR for compound 59
Supplementary Figure 284: $^{19}\text{F} \text{NMR for compound 59}$

$^{19}\text{F} \text{NMR (282 MHz, Chloroform-}d\text{)} \delta -66.99 \text{ (d, } J = 7.9 \text{ Hz).}
Supplementary Figure 285: 13C NMR for compound 59

13C NMR (75 MHz, Chloroform-d) δ 165.0, 133.7, 132.4, 132.0, 130.3, 128.9, 128.7, 128.2, 127.9, 127.2, 126.9, 126.2, 125.7, 124.9, 124.1 (q, $J = 293.0$ Hz), 61.1 (q, $J = 25.9$ Hz), 58.2, 48.8, 35.7.
Supplementary Figure 286: HSQC NMR for compound 59
Supplementary Figure 287: HMBC NMR for compound 59
Supplementary Figure 288: NOESY NMR for compound 59
Supplementary Figure 289: NOESY NMR for compound 59
Supplementary Figure 290: 1H-NMR for compound 60

1H NMR (500 MHz, Chloroform-d) δ 8.22 (s, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 8.5 Hz, 1H), 7.31 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H), 7.24 (ddd, J = 8.3, 6.9 Hz, 1H), 7.10 (dd, J = 6.9, 1.2 Hz, 1H), 7.07 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 6.64 (d, J = 5.5 Hz, 1H), 6.22 (dd, J = 3.5, 0.7 Hz, 1H), 4.37 (dd, J = 14.5, 10.1 Hz, 1H), 4.32 (dd, J = 14.4, 4.4 Hz, 1H), 4.17 (d, J = 12.8 Hz, 1H), 4.14 (s, 3H), 4.09 (d, J = 13.1 Hz, 1H), 4.01 – 3.90 (m, 1H), 2.63 (q, J = 2.0 Hz, 3H).
Supplementary Figure 291: COSY NMR for compound 60
Supplementary Figure 292: 19F NMR for compound 60

19F NMR (282 MHz, Chloroform) δ -66.78 (d, $J=8.2$ Hz).
Supplementary Figure 293: 13C NMR for compound 60

13C NMR (75 MHz, Chloroform-d) δ 162.6, 151.5, 150.4, 133.6, 133.0, 132.0, 128.4, 128.1, 127.8, 126.9 (q, $J = 293.1$ Hz), 126.1, 125.7, 125.4, 124.9, 123.8, 105.5, 98.5, 60.7 (q, $J = 24.5$ Hz), 58.3, 53.8, 41.4 (q, $J = 1.8$ Hz), 35.9.
Supplementary Figure 294: HSQC NMR for compound 60
Supplementary Figure 295: *HMBC NMR for compound 60*
Supplementary Figure 296: IR for compound 60
Supplementary Figure 297: 1H-NMR for compound 61

1H NMR (300 MHz, Chloroform-d) δ 7.66 (d, $J = 7.6$ Hz, 1H), 7.62 (d, $J = 7.4$ Hz, 1H), 7.40 (d, $J = 8.4$ Hz, 1H), 7.37 – 7.28 (m, 2H), 7.28 – 7.23 (m, 1H), 7.22 (s, 1H), 7.21 – 7.14 (m, 1H), 4.22 (d, $J = 11.5$ Hz, 2H), 4.07 (d, $J = 13.1$ Hz, 1H), 4.03 (s, 1H), 4.02 – 3.95 (m, 1H), 3.34 (s, 3H), 3.05 (s, 3H), 2.78 (q, $J = 2.3$ Hz, 3H).
Supplementary Figure 298: COSY NMR for compound 61
Supplementary Figure 299: 19F NMR for compound 61

19F NMR (282 MHz, Chloroform-d) δ -66.36 (d, $J = 6.3$ Hz).
Supplementary Figure 300: ^{13}C NMR for compound 61

^{13}C NMR (75 MHz, Chloroform-d) δ 153.9, 151.0, 148.1, 141.3, 133.5, 132.4, 132.0, 129.1, 128.4, 127.9, 126.7 (d, $J = 293.4$ Hz), 125.8, 125.2, 125.0, 123.5, 105.9, 57.9, 57.9 (q, $J = 24.8$ Hz), 43.2, 36.5, 29.6, 27.6.
Supplementary Figure 301: HSQC NMR for compound 61
Supplementary Figure 302: HMBC NMR for compound 61
Supplementary Figure 303: NOESY NMR for compound 61
Supplementary Figure 304: IR for compound 61
Supplementary Figure 305: 1H-NMR for compound 62

1H NMR (500 MHz, Chloroform-d) $^\delta$ 7.78 (dt, $J = 8.5, 1.6$ Hz, 1H), 7.70 (dd, $J = 8.4, 2.5$ Hz, 1H), 7.62 (dd, $J = 8.7, 3.9$ Hz, 1H), 7.50 (dt, $J = 7.8, 7.3, 1.5$ Hz, 1H), 7.41 (dddd, $J = 8.1, 6.8, 2.3, 1.2$ Hz, 1H), 7.24 – 7.15 (m, 2H), 7.13 – 7.03 (m, 3H), 6.84 (d, $J = 8.0$ Hz, 1H), 6.68 (d, $J = 6.6$ Hz, 1H), 4.98 (d, $J = 8.3$ Hz, 1H), 4.62 – 4.53 (m, 1H), 4.35 – 4.24 (m, 2H), 4.20 (d, $J = 13.4$ Hz, 1H), 4.17 – 4.13 (m, 1H), 3.70 (pt, $J = 12.1, 7.0, 6.0$ Hz, 1H), 3.62 (d, $J = 6.1$ Hz, 3H), 3.24 – 3.08 (m, 2H), 2.63 (dt, $J = 3.6, 1.9$ Hz, 3H), 1.42 (s, 9H).
Supplementary Figure 306: COSY NMR for compound 62
Supplementary Figure 307: 19F NMR for compound 62

19F NMR (282 MHz, Chloroform-d) δ -66.72 (d, J = 8.1 Hz).
Supplementary Figure 308: ^{13}C NMR for compound 62

^{13}C NMR (75 MHz, Chloroform) δ 172.77, 155.31, 136.00, 133.85, 132.63, 132.02, 128.73, 127.90, 125.99, 125.74, 125.11, 123.86, 122.16, 119.55, 108.89, 79.88, 79.47, 61.42, 58.46, 58.48, 54.31, 54.06, 52.26, 43.47, 36.16, 28.41.

f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 10
Supplementary Figure 309: HSQC NMR for compound 62
Supplementary Figure 310: HMBC NMR for compound 62
Supplementary Figure 311: IR for compound 62
Supplementary Figure 312: \(^1H\)-NMR for compound 63

\(^1H\) NMR (300 MHz, Chloroform-d) \(8.86 \ (dd, J = 5.1, 1.9 \text{ Hz}, 1H), 8.26 - 8.19 \ (m, 1H), 7.83 \ (dt, J = 8.3, 3.0 \text{ Hz}, 1H), 7.76 \ (d, J = 8.3 \text{ Hz}, 1H), 7.53 - 7.46 \ (m, 3H), 7.45 - 7.34 \ (m, 2H), 7.06 \ (d, J = 8.1 \text{ Hz}, 1H), 6.95 \ (dd, J = 7.4, 4.9 \text{ Hz}, 1H), 4.40 \ (d, J = 13.7 \text{ Hz}, 1H), 4.34 \ (d, J = 13.7 \text{ Hz}, 1H), 3.84 - 3.66 \ (m, 2H), 3.45 \ (dd, J = 14.6, 11.3 \text{ Hz}, 1H), 2.52 \ (d, J = 2.2 \text{ Hz}, 3H). \)
Supplementary Figure 313: 19F NMR for compound 63

19F NMR (282 MHz, Chloroform) δ -67.71 (d, J = 7.7 Hz).
Supplementary Figure 314: 13C NMR for compound 63

13C NMR (75 MHz, Chloroform-d) δ 158.2, 149.3, 132.3, 128.4, 128.2, 127.5, 127.2 (q, $J = 292.4$ Hz), 125.8, 125.7, 125.2, 124.9, 122.2, 62.5 (q, $J = 25.2$ Hz), 58.4, 36.1, 27.2.
Supplementary Figure 315: IR for compound 63
Supplementary Figure 316: 1H-NMR for compound 64

1H NMR (300 MHz, Chloroform-d) δ 8.24 – 8.11 (m, 1H), 7.93 – 7.82 (m, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.53 (t, J = 7.1, 3.7 Hz, 2H), 7.36 – 7.23 (m, 3H), 7.22 (t, J = 7.5 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 7.10 – 6.99 (m, 3H), 6.92 (s, 1H), 6.89 (s, 1H), 4.40 (dd, J = 12.0 Hz, 2H), 4.27 (d, J = 13.5 Hz, 1H), 4.24 (dd, J = 14.1, 3.9 Hz, 1H), 3.99 (ddq, J = 14.3, 8.9, 5.3, 4.6 Hz, 1H), 2.51 (s, 3H).
Supplementary Figure 317: 19F NMR for compound 64

19F NMR (282 MHz, Chloroformδ) δ -69.80 (d, J = 8.4 Hz).
Supplementary Figure 318: ^{13}C NMR for compound 64

^{13}C NMR (75 MHz, Chloroform-d$_2$) δ 144.8, 134.0, 133.9, 132.3, 128.4, 128.1, 127.7, 127.4, 126.7 (q, $J = 287.8$ Hz), 126.4, 125.8, 125.6, 125.2, 124.6, 123.3, 115.4, 59.0, 58.9 (q, $J = 25.6$ Hz), 43.1, 36.9.
Supplementary Figure 319: IR for compound 64
Supplementary Figure 320: 1H-NMR for compound 65
Supplementary Figure 321: 19F NMR for compound 65

19F NMR (235 MHz, Chloroform-d) δ -69.20.
Supplementary Figure 322: 13C NMR for compound 65

13C NMR (63 MHz, Chloroform-d) δ 158.6, 134.5, 134.0, 132.7, 132.2, 130.2, 128.5, 128.3, 127.7, 127.1 (q, $J = 287.8$ Hz), 125.8, 125.3, 125.2, 113.4, 61.8, 60.9 (q, $J = 24.8$ Hz), 55.4, 55.3, 54.5, 42.6, 35.0, 7.8, 7.7.
Supplementary Figure 323: IR for compound 65
Supplementary Figure 324: 1H-NMR for compound 66

1H NMR (250 MHz, Chloroform-d) δ 8.44 – 8.31 (m, 1H), 7.99 – 7.77 (m, 2H), 7.62 – 7.48 (m, 2H), 7.52 – 7.38 (m, 2H), 7.13 (d, $J = 8.3$ Hz, 2H), 6.81 (d, $J = 8.5$ Hz, 2H), 5.69 (ddt, $J = 16.6, 10.1, 6.4$ Hz, 1H), 5.20 – 5.02 (m, 2H), 4.12 (d, $J = 12.9$ Hz, 1H), 3.79 (s, 4H), 3.64 – 3.44 (m, 3H), 3.09 (dt, $J = 27.5, 7.6$ Hz, 3H), 2.60 (dd, $J = 13.3, 3.8$ Hz, 1H), 2.29 (s, 3H).
Supplementary Figure 325: 19F NMR for compound 66

19F NMR (235 MHz, Chloroform-d) δ -69.11.
Supplementary Figure 326: $^{13}\text{C} \text{NMR for compound 66}$

$^{13}\text{C} \text{NMR (63 MHz, Chloroform-}d\text{)} \delta 158.8, 137.0, 134.5, 134.1, 132.7, 131.6, 129.9, 128.5, 128.3, 127.8, 127.3 (q, J = 288.5 Hz), 125.9, 125.8, 125.3, 117.4, 113.7, 61.7, 57.3 (q, J = 24.6 Hz), 55.3, 54.2, 53.5, 53.4, 42.7.
Supplementary Figure 327: IR for compound 66
Supplementary Figure 328: 1H-NMR for compound 67

1H NMR (250 MHz, Chloroform-d) δ 8.40 – 8.29 (m, 1H), 7.96 – 7.78 (m, 2H), 7.58 – 7.49 (m, 1H), 7.48 (t, $J = 7.8$ Hz, 3H), 7.10 (d, $J = 8.4$ Hz, 2H), 6.80 (d, $J = 8.5$ Hz, 2H), 4.16 (d, $J = 12.9$ Hz, 1H), 3.87 (t, $J = 10.6$ Hz, 2H), 3.79 (s, 3H), 3.55 (dd, $J = 17.8$, 13.5 Hz, 2H), 3.47 (d, $J = 17.3$ Hz, 1H), 3.29 (d, $J = 17.1$ Hz, 1H), 3.11 (dd, $J = 13.1$, 9.3 Hz, 1H), 2.67 (dd, $J = 13.3$, 3.3 Hz, 1H), 2.37 (s, 3H), 2.21 (d, $J = 9.0$ Hz, 1H).
Supplementary Figure 329: 19F NMR for compound 67

19F NMR (235 MHz, Chloroform-d) δ -69.40.
Supplementary Figure 330: 13C NMR for compound 67

13C NMR (63 MHz, Chloroform-d) δ 158.9, 134.4, 134.0, 132.6, 130.5, 129.9, 128.6, 128.4, 127.9, 126.9 (q, $J = 288.1, 287.6, 287.6$ Hz), 126.0, 125.8, 125.3, 125.2, 113.8, 80.9, 72.6, 61.5, 59.1 (q, $J = 25.2$ Hz), 55.3, 53.8, 53.1, 42.6, 40.0.
Supplementary Figure 331: IR for compound 67
Supplementary Figure 332: ^1^H-NMR for compound 68

^1^H NMR (250 MHz, Chloroform-d) δ 8.25 – 8.12 (m, 1H), 7.82 – 7.59 (m, 2H), 7.30 (ddd, J = 21.7, 10.0, 5.6 Hz, 6H), 7.15 (s, 3H), 3.97 (d, J = 13.0 Hz, 1H), 3.78 (d, J = 13.0 Hz, 1H), 3.70 – 3.36 (m, 3H), 2.90 (dd, J = 13.2, 8.2 Hz, 1H), 2.58 (dd, J = 13.3, 3.8 Hz, 1H), 2.24 (s, 5H), 1.59 (dp, J = 13.6, 7.2 Hz, 1H), 0.76 (d, J = 6.4 Hz, 3H), 0.67 (d, J = 6.4 Hz, 3H).
Supplementary Figure 333: 19F NMR for compound 68

19F NMR (235 MHz, Chloroform-d) δ -69.38.
Supplementary Figure 334: 13C NMR for compound 68

13C NMR (63 MHz, Chloroform) δ 134.48, 134.01, 132.57, 131.67, 128.52, 128.35, 128.09, 127.61, 127.01 (q, $J = 288.4$, 287.7 Hz), 125.87, 125.77, 125.28, 124.97, 123.39, 86.74, 84.39, 61.43, 60.54 (q,J = 25.0 Hz), 58.50, 54.40, 42.64, 41.66, 26.57, 20.56, 20.41.
Supplementary Figure 335: IR for compound 68
Supplementary Figure 336: 1H-NMR for compound 69

1H NMR (250 MHz, Chloroform-δ) δ 8.26 (d, $J = 7.7$ Hz, 1H), 7.94 – 7.72 (m, 2H), 7.61 – 7.35 (m, 4H), 4.31 (p, $J = 6.2$ Hz, 1H), 4.09 (d, $J = 12.9$ Hz, 1H), 3.76 (d, $J = 13.0$ Hz, 1H), 3.71 – 3.60 (m, 1H), 3.30 (td, $J = 6.5$, 2.6 Hz, 1H), 3.15 (t, $J = 6.7$ Hz, 1H), 3.06 – 2.89 (m, 2H), 2.65 (qd, $J = 13.6$, 4.8 Hz, 2H), 2.52 (s, 3H), 0.88 (s, 9H), -0.00 (s, 6H).
Supplementary Figure 337: 19F NMR for compound 69

19F NMR (235 MHz, Chloroform-d) δ -72.80.
Supplementary Figure 338: 13C NMR for compound 69

13C NMR (63 MHz, Chloroform-d) δ 134.0, 134.0, 132.6, 128.6, 128.4, 127.9, 126.0, 125.8, 125.2, 124.8, 123.8 (q, J = 283.1, 282.7, 282.1 Hz), 65.1, 64.9 (q, J = 25.2 Hz), 62.8, 62.5, 61.5, 55.7 (q, J = 2.2, 1.7 Hz), 43.0, 25.9, 18.1, -4.9, -5.0.
Supplementary Figure 340: 1H-NMR for compound 70

1H NMR (250 MHz, Chloroform-d) δ 8.41 – 8.27 (m, 1H), 7.99 – 7.73 (m, 2H), 7.61 – 7.37 (m, 4H), 4.09 (d, $J = 12.8$ Hz, 1H), 3.87 (d, $J = 12.8$ Hz, 1H), 3.58 (pd, $J = 8.7$, 3.6 Hz, 1H), 2.99 (dd, $J = 13.3$, 9.0 Hz, 1H), 2.88 – 2.71 (m, 4H), 2.63 (dd, $J = 13.3$, 3.5 Hz, 1H), 2.31 (s, 3H), 1.75 – 1.54 (m, 4H).
Supplementary Figure 341: Supplementary Figure 342: COSY NMR for compound 70
Supplementary Figure 343: 19F NMR for compound 70

19F NMR (235 MHz, Chloroform-d) δ -69.81.
Supplementary Figure 344: 13C NMR for compound 70

13C NMR (63 MHz, Chloroform-d) δ 134.6, 134.0, 132.7, 128.5, 128.2, 127.7, 124.8 (q, J = 289.1 Hz), 61.3, 59.6 (q, J = 24.7 Hz), 54.3 – 53.6 (m), 48.7, 42.7, 24.1.
Supplementary Figure 345: HSQC NMR for compound 70
Supplementary Figure 346: HMBC NMR for compound 70
GC-MS TIC for compound 70
Supplementary Figure 347: IR for compound 70
Supplementary Figure 348: 1H-NMR for compound 71

1H NMR (250 MHz, Chloroform-d) δ 8.55 – 8.27 (m, 1H), 7.97 – 7.74 (m, 2H), 7.62 – 7.36 (m, 4H), 4.24 – 3.77 (m, 2H), 3.77 – 3.58 (m, 1H), 3.22 – 2.80 (m, 2H), 2.78 – 2.42 (m, 2H), 2.43 – 2.19 (m, 3H), 2.02 (td, J = 10.9, 4.6 Hz, 1H), 1.82 – 1.22 (m, 6H), 1.17 (d, J = 6.3 Hz, 1H), 1.04 (d, J = 6.1 Hz, 1H), 0.89 (dt, J = 24.7, 12.4, 6.3 Hz, 1H).
Supplementary Figure 349: 19F NMR for compound 71

19F NMR (235 MHz, Chloroform-d) δ -66.66, -70.84.
Supplementary Figure 350: 13C NMR for compound 71

13C NMR (63 MHz, Chloroform-d) δ 134.5, 134.0, 134.0, 132.7, 132.7, 128.5, 128.4, 128.3, 128.1, 127.8, 127.4, 126.6 (q, $J = 284.8, 283.8, 283.5$ Hz), 125.8, 125.7, 125.4, 125.2, 125.1, 61.9, 61.3, 57.5 (q, $J = 22.8$ Hz), 57.0 (q, $J = 25.4$ Hz), 55.6, 54.6, 52.4, 46.5 (q, $J = 1.8$ Hz), 46.4, 42.9, 42.7, 36.5, 36.3, 26.8, 26.5, 25.2, 24.4, 21.0, 20.3.
Supplementary Figure 351: IR for compound 71
Supplementary Figure 352: 1H-NMR for compound 72

1H NMR (250 MHz, Methanol-d_4) δ 8.35 (d, J = 7.9 Hz, 1H), 7.92 – 7.70 (m, 2H), 7.45 (d, J = 17.3, 7.4 Hz, 4H), 4.09 (d, J = 12.8 Hz, 1H), 3.85 (d, J = 12.7 Hz, 1H), 3.50 – 3.24 (m, 2H), 3.04 – 2.80 (m, 2H), 2.68 – 2.39 (m, 3H), 2.33 (s, 4H), 1.65 – 1.23 (m, 4H), 0.88 (s, 9H), 0.03 (s, 6H).
Supplementary Figure 353: 19F NMR for compound 72

19F NMR (235 MHz, Methanol-d_4) δ -69.95.
Supplementary Figure 354: 13C NMR for compound 72

13C NMR (63 MHz, Methanol-d$_4$) δ 135.4, 133.9, 129.4, 129.3, 128.9, 128.3 (q, $J = 290.5$, 289.9 Hz), 126.8, 126.3, 126.1, 69.9, 64.6 (q, $J = 24.1$ Hz), 62.1, 54.0, 47.6, 43.1, 36.9, 36.7, 26.4, 18.9, -4.4.
Supplementary Figure 355: IR for compound 72
Supplementary Figure 356: 1H-NMR for compound 73
Supplementary Figure 357: 19F NMR for compound 73

19F NMR (235 MHz, Chloroform-d) δ -68.1.
Supplementary Figure 358: 13C NMR for compound 73

13C NMR (63 MHz, Chloroform-d) δ 137.9, 134.7, 134.0, 132.6, 129.3, 128.5, 128.4, 128.2, 127.5, 127.3, 127.0 (d, $J = 290.7$ Hz), 125.9, 125.8, 125.2 (d, $J = 1.6$ Hz), 64.0 (q, $J = 23.9$ Hz), 63.1, 61.4, 53.8, 53.5 (d, $J = 2.0$ Hz), 49.2, 42.8.
Supplementary Figure 359: IR for compound 73
Supplementary Figure 360: 1H-NMR for compound 74

1H NMR (250 MHz, Chloroform-d) δ 8.4 – 8.3 (m, 1H), 8.2 (dd, $J = 5.0$, 2.0 Hz, 1H), 7.8 (t, $J = 9.3$ Hz, 2H), 7.4 (dt, $J = 7.8$, 4.9 Hz, 5H), 6.6 (d, $J = 7.0$ Hz, 1H), 6.6 (d, $J = 9.0$ Hz, 1H), 4.1 (d, $J = 12.9$ Hz, 1H), 4.0 (d, $J = 12.9$ Hz, 1H), 3.6 – 3.2 (m, 5H), 3.0 (dd, $J = 13.6$, 9.3 Hz, 1H), 2.8 (t, $J = 5.2$ Hz, 2H), 2.8 (q, $J = 6.7$, 5.8 Hz, 2H), 2.6 (dd, $J = 13.5$, 3.5 Hz, 1H), 2.3 (s, 3H).
Supplementary Figure 361: ^{19}F NMR for compound 74

^{19}F NMR (235 MHz, Chloroform-d) δ -68.3.
Supplementary Figure 362: $^{13}\text{C NMR for compound 74}$

$^{13}\text{C NMR (63 MHz, Chloroform-d_6) } \delta 159.4, 147.9, 137.6, 134.4, 134.0, 132.5, 128.5, 128.3,$
$127.6, 126.9 (q, $J = 290.8$ Hz), 125.9, 125.8, 125.2, 125.0, 113.2, 107.2, 64.1 (q, $J = 24.1$ Hz), 61.4, 53.4 (q, $J = 2.0$ Hz), 49.2, 46.1, 42.9.
Supplementary Figure 363: IR for compound 74
Supplementary Figure 364: 1H-NMR for compound 75

1H NMR (300 MHz, Chloroform-d) δ 8.35 (d, $J = 8.6$ Hz, 1H), 7.84 (d, $J = 8.5$ Hz, 1H), 7.80 (d, $J = 8.5$ Hz, 1H), 7.51 – 7.34 (m, 3H), 7.24 – 7.10 (m, 4H), 7.04 – 6.95 (m, 1H), 4.12 (d, $J = 12.8$ Hz, 1H), 4.11 (d, $J = 14.5$ Hz, 1H), 3.97 (d, $J = 14.8$ Hz, 1H), 3.96 (d, $J = 12.8$ Hz, 1H), 3.64 – 3.47 (m, 1H), 3.20 – 2.93 (m, 3H), 2.92 – 2.81 (m, 2H), 2.75 (dd, $J = 13.5$, 3.6 Hz, 1H), 2.34 (s, 3H).
Supplementary Figure 365: 19F NMR for compound 75

19F NMR (282 MHz, Chloroform) δ -67.90 (d, $J = 8.5$ Hz).
Supplementary Figure 366: 13C NMR for compound 75

13C NMR (75 MHz, Chloroform-d) δ 135.2, 134.6, 133.9, 132.5, 128.3, 128.2, 127.6, 127.2 (q/ν = 291.4 Hz), 126.4, 126.0, 125.8, 125.7, 125.6, 125.1, 63.7 (q/ν = 23.9 Hz), 61.2, 53.8, 51.6, 47.3, 42.8, 30.4.
Supplementary Figure 367: IR for compound 75
Supplementary Figure 368: 1H-NMR for compound 76

1H NMR (250 MHz, Chloroform-d) δ 8.40 – 8.29 (m, 1H), 7.93 – 7.73 (m, 2H), 7.60 – 7.37 (m, 4H), 4.05 (d, $J = 12.9$ Hz, 1H), 3.94 (d, $J = 12.9$ Hz, 1H), 3.56 (tt, $J = 11.3$, 5.7 Hz, 1H), 2.97 (dd, $J = 13.1$, 8.7 Hz, 1H), 2.81 (qd, $J = 11.7$, 4.2 Hz, 4H), 2.59 (dd, $J = 13.2$, 3.6 Hz, 1H), 2.33 (s, 3H), 1.81 (s, 2H), 1.67 (d, $J = 9.1$ Hz, 4H), 1.63 – 1.44 (m, 4H).
Supplementary Figure 369: $^{19}\text{F NMR for compound 76}$

$^{19}\text{F NMR (235 MHz, Chloroform-d)} \delta -68.81.$
Supplementary Figure 370: 13C NMR for compound 76

13C NMR (63 MHz, Chloroform-d) δ 134.6, 134.0, 132.7, 129.8 (q, $J = 292.0$, 291.5 Hz), 128.5, 128.3, 127.7, 125.8, 125.2, 125.1, 64.0 (q, $J = 24.2$ Hz), 61.8, 59.0, 54.6, 42.3, 31.4, 25.6, 25.5.
Supplementary Figure 371: IR for compound 76
Supplementary Figure 372: 1H-NMR for compound 77

1H NMR (250 MHz, Methanol-d_4) δ 7.23 – 7.03 (m, 4H), 7.00 – 6.84 (m, 4H), 4.21 (dd, $J = 14.6, 9.2$ Hz, 1H), 4.12 (dd, $J = 14.4, 4.4$ Hz, 1H), 3.76 (pd, $J = 8.8, 4.2$ Hz, 1H), 2.61 (qd, $J = 6.9, 2.8$ Hz, 4H), 0.77 (t, $J = 7.1$ Hz, 6H).
Supplementary Figure 373: 19F NMR for compound 77

19F NMR (235 MHz, Methanol-d$_4$) δ -71.60.
Supplementary Figure 374: 13C NMR for compound 77

13C NMR (63 MHz, Methanol-d_4) δ 145.1, 127.6, 127.5, 127.4 (q, $J = 289.0$ Hz), 126.4, 123.0, 58.0 (q, $J = 24.9$ Hz), 44.6, 43.5 (q, $J = 1.8$ Hz), 13.8.
Supplementary Figure 375: IR for compound 77
Supplementary Figure 376: 1H-NMR for compound 78

1H NMR (250 MHz, Chloroform-d) δ 8.31 – 8.18 (m, 1H), 7.97 – 7.79 (m, 2H), 7.64 – 7.46 (m, 3H), 7.52 – 7.39 (m, 1H), 4.92 – 4.73 (m, 1H), 4.74 – 4.54 (m, 1H), 4.35 (s, 2H), 3.61 (d, $J = 17.3$, 8.6, 6.8, 4.9 Hz, 1H), 2.57 (s, 3H).
Supplementary Figure 377: 19F NMR for compound 78

19F NMR (235 MHz, Chloroform-d) δ -67.89 (t, $J = 7.7$ Hz), -229.51 (dq, $J = 46.1, 17.8, 6.5$ Hz).
Supplementary Figure 378: 13C NMR for compound 78

13C NMR (63 MHz, Chloroform-d) δ 134.1, 133.6, 132.4, 128.7, 127.7, 126.1, 126.1 (qd, $J =$ 289.2, 10.0 Hz), 125.9, 125.3, 124.5, 79.5 (qd, $J =$ 174.7, 2.3 Hz), 62.5 (qd, $J =$ 26.0, 20.8 Hz), 58.9, 37.5.
Supplementary Figure 379: IR for compound 78
Supplementary Figure 380: 1H-NMR for compound 79

1H NMR (250 MHz, Chloroform-d) δ 8.28 (dd, $J = 7.2$, 1.8 Hz, 1H), 7.92 (dt, $J = 6.4$, 2.5 Hz, 1H), 7.85 (d, $J = 8.2$ Hz, 1H), 7.58 (qd, $J = 4.3$, 1.9 Hz, 2H), 7.52 (d, $J = 5.5$ Hz, 1H), 7.46 (d, $J = 7.2$ Hz, 1H), 4.42 (dd, $J = 13.5$, 2.8 Hz, 2H), 3.91 – 3.70 (m, 2H), 3.63 (pd, $J = 8.1$, 4.6 Hz, 1H), 2.53 (s, 3H).
Supplementary Figure 381: 19F NMR for compound 79

19F NMR (235 MHz, Chloroform-d) δ -68.17.
Supplementary Figure 382: 13C NMR for compound 79

13C NMR (63 MHz, Chloroform-d) δ 134.0, 133.7, 132.3, 128.6, 128.5, 127.6, 126.0, 125.9, 125.4 (d, $J = 290.8$ Hz), 125.3, 124.6, 65.2 (q, $J = 25.9$ Hz), 58.6, 39.2 (d, $J = 2.0$ Hz), 36.1.
Supplementary Figure 383: IR for compound 79
Supplementary Figure 384: 1H-NMR for compound 80

1H NMR (250 MHz, Chloroform-d) δ 8.35 – 8.21 (m, 1H), 7.97 – 7.79 (m, 2H), 7.69 – 7.30 (m, 4H), 4.42 (dd, $J = 13.5, 3.9$ Hz, 2H), 3.79 – 3.61 (m, 1H), 3.67 – 3.54 (m, 2H), 2.55 – 2.47 (m, 3H).
Supplementary Figure 385: 19F NMR for compound 80

19F NMR (235 MHz, Chloroform-d) δ -67.98.
Supplementary Figure 386: 13C NMR for compound 80

13C NMR (63 MHz, Chloroform-d) δ 134.0, 133.6, 132.3, 128.6, 128.5, 127.6, 126.0, 125.9, 125.4 (d, $J = 291.7$ Hz), 125.3, 124.7, 65.2 (q, $J = 25.8$ Hz), 58.3, 35.9, 25.9 (q, $J = 1.7$ Hz).
Supplementary Figure 387: IR for compound 80
Supplementary Figure 388: 1H-NMR for compound 81

1H NMR (250 MHz, Acetone-d_6) δ 8.36 – 8.25 (m, 1H), 7.98 – 7.80 (m, 2H), 7.64 (d, $J = 7.0$ Hz, 1H), 7.61 – 7.40 (m, 3H), 4.45 (s, 2H), 3.81 (td, $J = 8.1, 6.1$ Hz, 1H), 3.65 – 3.45 (m, 2H), 2.43 (t, $J = 1.8$ Hz, 3H).
Supplementary Figure 389: $^{19}\text{F NMR for compound 81}$

$^{19}\text{F NMR (235 MHz, Acetone$_d_6$)} \delta \approx -68.19$.

![NMR Spectrum](image)

F (ppm)
Supplementary Figure 390: 13C NMR for compound 81

13C NMR (63 MHz, Acetone d_6) δ 134.9, 134.8, 133.1, 129.2, 129.0, 128.1, 126.6, 126.5, 126.1 (q, $J = 292.6$ Hz), 126.0, 125.8, 66.3 (q, $J = 25.4$ Hz), 58.3 (d, $J = 1.4$ Hz), 35.6, -2.8.
Supplementary Figure 391: IR for compound 81
Supplementary Figure 392: 1H-NMR for compound 82

1H NMR (250 MHz, Chloroform-d) δ 8.26 (d, $J = 8.0$ Hz, 1H), 7.91 (dd, $J = 7.5$, 1.9 Hz, 1H), 7.86 (dd, $J = 7.7$, 1.7 Hz, 1H), 7.67 – 7.41 (m, 4H), 4.43 (d, $J = 13.2$ Hz, 1H), 3.35 (dd, $J = 13.2$ Hz, 1H), 3.61 (dd, $J = 12.6$, 9.6 Hz, 1H), 3.56 – 3.34 (m, 1H), 3.31 (dd, $J = 12.6$, 3.6 Hz, 1H), 2.55 (s, 3H).
Supplementary Figure 393: 19F NMR for compound 82

19F NMR (235 MHz, Chloroform-d) δ -67.45.
Supplementary Figure 394: 13C NMR for compound 82

13C NMR (63 MHz, Chloroform-d) δ 134.4, 133.6, 132.7, 129.0, 128.9, 128.2, 126.4, 126.3, 126.0 (q, J = 290.4 Hz), 125.6, 124.7, 62.8 (q, J = 25.1 Hz), 59.0, 47.4 (q, J = 2.1 Hz), 36.3.
Supplementary Figure 395: IR for compound 82
Supplementary Figure 396: 1H-NMR for compound 83

1H NMR (250 MHz, Chloroform-d) δ 8.3 – 8.1 (m, 1H), 8.0 – 7.8 (m, 2H), 7.7 – 7.4 (m, 4H), 4.4 (d, $J = 2.9$ Hz, 2H), 3.7 (dtd, $J = 10.1, 7.7, 4.9$ Hz, 1H), 2.8 (dd, $J = 17.1, 10.1$ Hz, 1H), 2.6 (dd, $J = 17.1, 4.9$ Hz, 1H), 2.5 (q, $J = 1.8$ Hz, 3H).
Supplementary Figure 397: 19F NMR for compound 83

19F NMR (235 MHz, Chloroform-d) δ -69.2.
Supplementary Figure 398: 13C NMR for compound 83

13C NMR (63 MHz, Chloroform-d) δ 134.0, 132.7, 132.2, 128.8, 128.6, 127.7, 126.3, 126.1, 125.9 (q, $J = 290.9$ Hz), 125.3, 124.4, 116.4, 59.6 (q, $J = 27.3$ Hz), 58.2 (d, $J = 1.5$ Hz), 36.0 (d, $J = 1.4$ Hz), 16.1 (q, $J = 2.3$ Hz).
Supplementary Figure 399: IR for compound 83
Supplementary Figure 400: 1H-NMR for compound 84

1H NMR (250 MHz, Chloroform-d) δ 7.17 (d, $J = 8.5$ Hz, 2H), 6.78 (d, $J = 8.6$ Hz, 2H), 5.70 (ddt, $J = 16.5$, 10.1, 6.3 Hz, 1H), 5.14 (d, $J = 21.4$ Hz, 1H), 5.08 (d, $J = 15.4$ Hz, 1H), 4.67 (dt, $J = 6.5$, 3.8 Hz, 1H), 4.56 – 4.42 (m, 1H), 3.74 (s, 2H), 3.71 (s, 3H), 3.68 – 3.38 (m, 1H), 3.25 (d, $J = 6.3$ Hz, 2H).
Supplementary Figure 401: $^{19}\text{F} \text{NMR for compound 84}$

$^{19}\text{F} \text{NMR (235 MHz, Chloroform-d)}$ 8 -68.3 (d, $J = 6.6 \text{ Hz}$), -229.1 (q, $J = 6.6 \text{ Hz}$).
Supplementary Figure 402: 13C NMR for compound 84

13C NMR (63 MHz, Chloroform-d) δ 159.1, 136.0, 130.8, 129.8, 126.1 (qd, $J = 288.0$, 8.9 Hz), 118.2, 114.0, 80.6 (qd, $J = 174.9$, 1.8 Hz), 59.5 (qd, $J = 26.4$, 20.8 Hz), 55.4, 54.2, 54.0.
Supplementary Figure 403: IR for compound 84
Supplementary Figure 404: 1H-NMR for compound 85

1H NMR (250 MHz, Chloroform-d) \delta 8.3 – 8.0 (m, 1H), 7.5 (dd, J = 7.9, 7.1, 2.0 Hz, 1H), 6.6 (dd, J = 7.7, 4.7 Hz, 2H), 4.8 (q, J = 5.6 Hz, 1H), 4.7 – 4.4 (m, 1H), 3.5 (t, J = 5.0 Hz, 4H), 3.5 – 3.3 (m, 1H), 2.9 (p, J = 6.3, 5.3 Hz, 4H).
Supplementary Figure 405: $^{19}\text{F} \text{NMR for compound 85}$

$^{19}\text{F} \text{NMR (235 MHz, Chloroform-d)} \delta -68.3 \text{ (d, } J = 6.8 \text{ Hz), -228.8 \text{ (q, } J = 6.8 \text{ Hz).}$
Supplementary Figure 406: 19F NMR for compound 85

$\text{^1H NMR (63 MHz, Chloroform-\textit{d}) δ 159.4, 148.0, 137.7, 125.5 (qd, $J = 288.1, 9.7$ Hz), 113.5, 107.2, 80.5 (qd, $J = 175.1, 2.3$ Hz), 65.4 (qd, $J = 26.2, 20.6$ Hz), 50.1, 46.1.}$
Supplementary Figure 407: IR for compound 85
Supplementary Figure 408: 1H-NMR for compound 86

1H NMR (250 MHz, Chloroform-d) δ 8.28 (dd, $J = 6.4$, 2.7 Hz, 1H), 7.97 – 7.75 (m, 2H), 7.62 – 7.28 (m, 9H), 4.55 (s, 2H), 4.37 (s, 2H), 3.97 – 3.84 (m, 1H), 3.79 (dd, $J = 10.3$, 4.3 Hz, 1H), 3.64 (dd, $J = 12.6$, 8.5, 4.2 Hz, 1H), 2.51 (s, 3H).

492
Supplementary Figure 409: 19F NMR for compound 86

19F NMR (235 MHz, Chloroform-d) δ -68.13.
Supplementary Figure 410: 13C NMR for compound 86

13C NMR (63 MHz, Chloroform-d) δ 137.9, 134.3, 134.1, 132.5, 128.6, 128.3, 127.9, 127.7, 127.6, 126.7 (q, J = 289.1, 288.7 Hz), 126.0, 125.8, 125.3, 124.7, 73.5, 66.1 (q, J = 1.8 Hz), 63.2 (q, J = 25.4 Hz), 58.9, 37.3.
Supplementary Figure 411: IR for compound 86
Supplementary Figure 412: 1H-NMR for compound 87

1H NMR (250 MHz, Chloroform-d): δ 8.31 (dd, $J = 6.0$, 3.4 Hz, 1H), 8.00 – 7.81 (m, 2H), 7.67 – 7.43 (m, 4H), 7.40 (d, $J = 8.7$ Hz, 2H), 6.73 (d, $J = 8.7$ Hz, 2H), 4.42 (d, $J = 3.0$ Hz, 2H), 4.54 – 4.08 (m, 2H), 3.92 – 3.66 (m, 1H), 2.61 (s, 3H).
Supplementary Figure 413: 19F NMR for compound 87

19F NMR (235 MHz, Chloroform-d) δ -67.62.
Supplementary Figure 414: ^{13}C NMR for compound 87

^{13}C NMR (63 MHz, Chloroform-d) δ 157.2, 134.1, 133.8, 132.4, 128.6, 127.8, 126.3 (q, $J = 289.7, 289.6, 288.5$ Hz), 126.0, 125.9, 125.3, 124.7, 116.4, 113.7, 64.1 (q, $J = 1.6$ Hz), 61.9 (q, $J = 25.7$ Hz), 59.0, 57.1.
Supplementary Figure 415: IR for compound 87
Supplementary Figure 416: 1H-NMR for compound 88

1H NMR (250 MHz, Chloroform-d) δ 8.16 (d, $J = 8.4$ Hz, 1H), 8.00 – 7.89 (m, 2H), 7.84 (t, $J = 8.3$ Hz, 2H), 7.61 (t, $J = 7.3$ Hz, 1H), 7.54 – 7.37 (m, 5H), 7.31 (t, $J = 7.6$ Hz, 1H), 4.74 (dd, $J = 11.7, 8.6$ Hz, 1H), 4.53 (dd, $J = 11.8, 4.5$ Hz, 1H), 4.38 (s, 2H), 3.80 (ddq, $J = 13.1, 8.5, 4.8, 4.2$ Hz, 1H), 2.62 (s, 3H).
Supplementary Figure 417: 19F NMR for compound 88

19F NMR (235 MHz, Chloroform-d) δ -67.46.
Supplementary Figure 418: ^{13}C NMR for compound 88

^{13}C NMR (63 MHz, Chloroform-d) δ 166.1, 134.0, 133.6, 133.2, 132.4, 129.8, 129.7, 128.5, 127.7, 126.1, 125.8, 125.2, 124.3, 124.3 (q, $J = 291.0, 290.5$ Hz), 61.7 (q, $J = 25.5$ Hz), 59.8 (d, $J = 2.1$ Hz), 58.7, 36.7.
Supplementary Figure 419: IR for compound 88
Supplementary Figure 420: 1H-NMR for compound 89

1H NMR (250 MHz, Chloroform-d) δ 8.31 (d, J = 7.9 Hz, 1H), 7.95 – 7.77 (m, 2H), 7.65 – 7.40 (m, 4H), 4.43 (d, J = 13.8 Hz, 1H), 4.36 (d, J = 13.7 Hz, 1H), 3.50 (ddh, J = 16.3, 8.2, 4.2 Hz, 1H), 2.98 (dd, J = 13.5, 10.3 Hz, 1H), 2.82 (dd, J = 13.5, 4.0 Hz, 1H), 2.50 (s, 4H), 2.00 – 1.53 (m, 5H), 1.43 – 1.12 (m, 5H).
Supplementary Figure 421: 19F NMR for compound 89

19F NMR (235 MHz, Chloroform-d) δ -68.07.
Supplementary Figure 422: ^{13}C NMR for compound 89

^{13}C NMR (63 MHz, Chloroform-\(d_2\)) \(\delta\) 134.1, 134.0, 132.5, 128.5, 128.3, 127.6, 125.9, 125.8, 125.3, 124.9, 124.9 (q, \(J = 292.2\) Hz), 63.9 (q, \(J = 24.8\) Hz), 58.4, 43.9, 36.0, 33.4, 33.4, 27.0, 26.1, 26.0, 25.9.
Supplementary Figure 423: IR for compound 89
Supplementary Figure 424: 1H-NMR for compound 90

1H NMR (250 MHz, Chloroform-δ) δ 8.28 (d, $J = 7.5$ Hz, 1H), 8.00 – 7.80 (m, 2H), 7.68 – 7.40 (m, 5H), 7.20 (d, $J = 8.5$ Hz, 2H), 7.10 (d, $J = 8.6$ Hz, 2H), 4.39 (dd, $J = 13.5$, 6.5 Hz, 2H), 3.52 (tt, $J = 12.9$, 6.4 Hz, 1H), 3.27 (dd, $J = 13.6$, 9.6 Hz, 1H), 3.17 (dd, $J = 13.5$, 7.3 Hz, 1H), 2.56 (s, 3H).
Supplementary Figure 425: 19F NMR for compound 90

19F NMR (235 MHz, Chloroform) δ -67.35.
Supplementary Figure 426: 13C NMR for compound 90

13C NMR (63 MHz, Chloroform-d) 8 134.2, 134.0, 133.5, 132.5, 132.4, 130.8, 129.2, 128.6, 128.4, 127.7, 126.0, 125.8, 125.3, 124.8, 124.7 (q, $J = 292.8$, 292.3 Hz), 62.0 (q, $J = 25.1$ Hz), 58.2, 36.1, 31.8 (q, $J = 1.0$ Hz).
Supplementary Figure 427: IR for compound 90
Supplementary Figure 428: 1H-NMR for compound 91

1H NMR (250 MHz, Chloroform-d) δ 8.27 – 8.16 (m, 1H), 7.92 – 7.68 (m, 4H), 7.63 – 7.38 (m, 4H), 7.44 – 7.22 (m, 2H), 4.42 (d, J = 13.2 Hz, 1H), 4.36 (d, J = 13.6 Hz, 1H), 4.03 – 3.80 (m, 2H), 3.64 (dd, J = 13.8, 11.1 Hz, 1H), 2.57 (t, J = 2.0 Hz, 3H).
Supplementary Figure 429: 19F NMR for compound 91

19F NMR (235 MHz, Chloroform-d) δ -67.14.
Supplementary Figure 430: 13C NMR for compound 91

13C NMR (63 MHz, Chloroform-d) δ 166.0, 153.1 (d, $J = 292.9$ Hz), 135.3, 133.9, 133.4, 132.3, 128.5, 128.4, 127.6, 127.0 (q, $J = 292.9$ Hz), 126.0, 125.9, 125.8, 125.1, 124.7, 124.3, 121.6, 121.0, 61.7 (q, $J = 25.5$ Hz), 58.2, 35.9, 30.6 (q, $J = 1.8$ Hz).
Supplementary Figure 431: IR for compound 91
Supplementary Figure 432: 1H-NMR for compound 92

1H NMR (250 MHz, Chloroform-d) δ 8.28 – 8.10 (m, 1H), 7.94 – 7.77 (m, 2H), 7.73 – 7.36 (m, 9H), 4.42 – 4.18 (m, 3H), 3.90 – 3.74 (m, 1H), 3.73 – 3.42 (m, 1H), 2.56 – 2.29 (m, 3H).
Supplementary Figure 433: 19F NMR for compound 92

19F NMR (235 MHz, Chloroform-d) δ -67.74, -67.79.
Supplementary Figure 434: 13C NMR for compound 92

13C NMR (63 MHz, Chloroform-d) 8 144.1, 143.9, 134.0, 133.7, 133.6, 152.5, 132.4, 132.3, 129.2, 129.2, 128.6, 128.5, 127.6, 127.6, 126.0, 126.0, 125.9, 125.8, 125.4, 125.3, 124.6, 124.6, 123.7 (q, $J = 290.0$, 289.5 Hz), 63.3 (q, $J = 26.5$, 26.0 Hz), 62.2 (q, $J = 26.3$, 26.2, 25.8 Hz), 58.7, 36.8, 36.4.
Supplementary Figure 435: IR for compound 92
Supplementary Figure 436: 1H-NMR for compound 93

1H NMR (250 MHz, Chloroform-d) δ 8.22 (d, $J = 7.9$ Hz, 1H), 7.86 (dd, $J = 23.7$, 7.9 Hz, 2H), 7.65 – 7.48 (m, 3H), 7.39 (dt, $J = 22.4$, 7.9 Hz, 1H), 3.97 (q, $J = 13.8$ Hz, 2H), 3.42 (td, $J = 14.3$, 12.7, 5.3 Hz, 1H), 2.73 – 2.53 (m, 2H), 2.50 (s, 3H).
Supplementary Figure 437: 19F NMR for compound 93

19F NMR (235 MHz, Chloroform-d) δ -67.93 (d, $J = 5.8$ Hz).
Supplementary Figure 438: ^{31}P NMR for compound 93

^{31}P NMR (101 MHz, Chloroform-d) δ -22.55 (q, $J = 5.8$ Hz).
Supplementary Figure 439: 13C NMR for compound 93

13C NMR (63 MHz, Chloroform-d) δ 138.9 (d, $J = 13.8$ Hz), 137.0 (d, $J = 15.1$ Hz), 134.0, 133.4, 133.4, 133.0, 132.6, 132.3, 132.3, 129.9 (dq, $J = 293.8, 9.5$ Hz), 129.2, 128.8, 128.7, 128.6, 128.6, 128.5, 128.2, 127.5 (d, $J = 1.6$ Hz), 126.1, 125.7, 125.3, 124.5 (d, $J = 2.3$ Hz), 61.3 (qd, $J = 25.6, 14.9$ Hz), 57.8, 36.2, 26.6 (d, $J = 14.4$ Hz).
Supplementary Figure 440: IR for compound 93
Supplementary Figure 441: 1H-NMR for compound 94

1H NMR (250 MHz, Methylene Chloride-d_2): 8 8.30 – 7.84 (m, 3H), 7.85 – 7.24 (m, 4H), 4.75 (bs, 1H), 4.64–4.32 (m, 1H), 4.32–3.89 (m, 1H), 3.37 (d, $J = 26.2$ Hz, 2H), 2.88 (s, 1H), 2.76 (s, 3H), 2.41–1.33 (m, 24H), 1.09 (s, 6H).
Supplementary Figure 442: $^{19}\text{F NMR for compound 94}$

$^{19}\text{F NMR (235 MHz, Methylene Chloride-}d_2$) δ -65.25, -76.93.
Supplementary Figure 443: ^{31}P NMR for compound 94

^{31}P NMR (101 MHz, Methylene Chloride-d_2) δ 30.67.
Supplementary Figure 444: 13C NMR for compound 94

13C NMR (63 MHz, Methylene Chloride-d$_2$) δ 134.8, 128.6 (qd, $J = 292.4, 14.7$ Hz), 118.8 (q, $J = 321.2$ Hz), 65.9, 57.7, 56.2 (qd, $J = 26.9, 5.2$ Hz), 37.8 (d, $J = 40.9$ Hz), 37.4 (b, $J = 17.0, 17.0, 15.9, 15.7, 14.9$ Hz), 35.3 (d, $J = 19.6$ Hz), 27.7 (d, $J = 18.8$ Hz), 27.5 (d, $J = 18.4$ Hz), 22.9, 15.4, 11.0, 10.2.
Supplementary Figure 445: IR for compound 94
Supplementary Figure 446: 1H-NMR for compound 95

1H NMR (250 MHz, Chloroform-d) δ 8.08 (d, $J = 8.0$ Hz, 1H), 7.93 – 7.71 (m, 2H), 7.63 – 7.37 (m, 4H), 4.36 (d, $J = 13.3$ Hz, 1H), 4.24 (d, $J = 13.5$ Hz, 1H), 4.15 (q, $J = 7.1$ Hz, 2H), 4.01 (dq, $J = 10.8, 7.1$ Hz, 1H), 3.83 (dq, $J = 10.8, 7.1$ Hz, 1H), 3.52 (dd, $J = 9.1, 5.1$ Hz, 1H), 3.50 – 3.29 (m, 1H), 2.53 – 2.43 (m, 3H), 2.20 (dt, $J = 9.9, 4.5$ Hz, 2H), 1.23 (t, $J = 7.1$ Hz, 3H), 1.14 (t, $J = 7.1$ Hz, 3H).
Supplementary Figure 447: $^{19}\text{F NMR for compound 95}$

$^{19}\text{F NMR (235 MHz, Chloroform-d)}$ δ -67.43.
Supplementary Figure 448: 13C NMR for compound 95

13C NMR (63 MHz, Chloroform-d) δ 169.5, 168.6, 134.1, 133.6, 132.3, 128.7, 128.4 (q, $J = 293.1$ Hz), 128.4, 127.9, 126.2, 125.8, 125.3, 124.2, 61.6, 61.3, 59.9 (q, $J = 25.1$ Hz), 57.9, 47.8, 35.9, 25.6 (d, $J = 1.9$ Hz), 14.1, 13.9.
Supplementary Figure 449: IR for compound 95
Supplementary Figure 450: 1H-NMR for compound 96

1H NMR (300 MHz, Chloroform-d) 8.37 (d, $J = 5.7$ Hz, 1H), 8.16 (d, $J = 8.0$ Hz, 1H), 7.88 – 7.79 (m, 1H), 7.78 (dd, $J = 8.2$, 4.2 Hz, 2H), 7.68 (d, $J = 8.1$ Hz, 2H), 7.63 (d, $J = 8.0$ Hz, 1H), 7.43 (dq, $J = 14.9$, 7.8, 7.2 Hz, 7H), 4.42 (d, $J = 13.3$ Hz, 1H), 4.32 (d, $J = 13.3$ Hz, 1H), 3.49 (dd, $J = 8.5$, 6.0 Hz, 1H), 3.46 – 3.30 (m, 1H), 2.86 (dt, $J = 16.0$, 8.1 Hz, 1H), 2.62 (s, 3H), 2.29 – 2.19 (m, 2H).
Supplementary Figure 451: COSY NMR for compound 96
Supplementary Figure 452: 19F NMR for compound 96

19F NMR (282 MHz, Chloroformδ) δ -67.33 (d, $J = 8.2$ Hz).
Supplementary Figure 453: ^{13}C NMR for compound 96

^{13}C NMR (75 MHz, Chloroform-d) δ 160.5, 141.5, 136.0, 134.3, 134.1, 132.5, 129.9, 128.7, 128.4, 127.9, 127.4, 127.1, 126.9, 126.2 (q, $J = 293.4$ Hz), 125.9, 125.7, 125.3, 125.0, 124.7, 124.3, 119.4, 61.4 (q, $J = 24.5$ Hz), 58.3, 36.1, 30.9, 24.4.
Supplementary Figure 454: HSQC NMR for compound 96
Supplementary Figure 455: *HMBC NMR for compound 96*
Supplementary Figure 456: IR for compound 96
Supplementary Figure 457: 1H-NMR for compound 97

1H NMR (300 MHz, Chloroform-d) δ 8.42 (d, $J = 4.7$ Hz, 1H), 8.26 – 8.15 (m, 1H), 7.93 – 7.78 (m, 2H), 7.64 – 7.38 (m, 4H), 7.36 – 7.25 (m, 1H), 7.03 (dd, $J = 7.6$, 4.8 Hz, 1H), 4.48 (d, $J = 13.3$ Hz, 1H), 4.32 (d, $J = 13.2$ Hz, 1H), 3.31 (ddt, $J = 16.4$, 11.5, 5.8 Hz, 1H), 2.92 (tt, $J = 11.2$, 4.6 Hz, 1H), 2.79 – 2.72 (m, 4H), 2.59 (q, $J = 6.1$ Hz, 2H), 1.53 – 1.33 (m, 2H), 1.25 – 1.05 (m, 1H), 1.02 – 0.76 (m, 2H).
Supplementary Figure 458: COSY NMR for compound 97
Supplementary Figure 459: TOCSY NMR for compound 97
Supplementary Figure 460: 19F NMR for compound 97

19F NMR (282 MHz, Chloroform-d) δ -66.30 (d, J = 8.3 Hz), -66.94 (d, J = 8.2 Hz).
Supplementary Figure 461: 13C NMR for compound 97

13C NMR (75 MHz, Chloroform-d) δ 159.8, 146.5, 137.2, 134.4, 134.1, 132.7, 129.0, 128.6, 128.4, 128.3, 128.1, 126.6, 126.0, 125.8, 125.3, 124.9, 123.7, 121.0, 58.6, 58.2, 57.9 (d, $J = 24.2$ Hz), 36.2, 35.7, 31.1, 29.1, 26.5, 19.8.
Supplementary Figure 462: HSQC NMR for compound 97
Supplementary Figure 463: HMBC NMR for compound 97
Supplementary Figure 464: IR for compound 97
Supplementary Figure 465: 1H-NMR for compound 98

1H NMR (250 MHz, Chloroform-d) δ 7.78 (d, $J = 8.2$ Hz, 1H), 7.70 (d, $J = 8.0$ Hz, 1H), 7.67 – 7.58 (m, 1H), 7.48 – 7.17 (m, 6H), 7.11 (d, $J = 7.0$ Hz, 1H), 7.05 (d, $J = 7.4$ Hz, 1H), 6.74 (d, $J = 2.4$ Hz, 1H), 4.24 (d, $J = 13.6$ Hz, 1H), 4.16 (d, $J = 13.4$ Hz, 1H), 3.80 – 3.52 (m, 1H), 3.15 (s, 1H), 3.12 (s, 1H), 2.57 – 2.43 (m, 3H).
Supplementary Figure 466: COSY NMR for compound 98
Supplementary Figure 467: TOCSY NMR for compound 98
Supplementary Figure 468: 19F NMR for compound 98

19F NMR (235 MHz, Chloroform-d) δ -67.64.
Supplementary Figure 469: 13C NMR for compound 98

13C NMR (126 MHz, Chloroform-d) δ 136.2, 134.1, 133.8, 132.2, 129.1 (d, $J = 292.8$ Hz), 128.2, 128.1, 127.5, 127.3, 125.4, 125.4, 125.0, 124.5, 123.1, 122.0, 119.5, 118.4, 111.8, 111.2, 63.8 (q, $J = 24.0$ Hz), 58.6 (d, $J = 1.4$ Hz), 35.6, 22.5 (q, $J = 1.9$ Hz).
Supplementary Figure 470: HSQC NMR for compound 98
Supplementary Figure 471: HMBC NMR for compound 98
Supplementary Figure 472: IR for compound 98
Supplementary References

